Temporal Graph Functional Dependencies - Technical Report

Data dependencies have been extended to graphs e.g., graph functional dependencies (GFDs) to characterize the topological and value constraints in graphs. Existing graph dependencies are defined for static graphs. Nevertheless, temporal data constraints may hold over evolving graphs for certain periods. The need for characterizing temporal graph dependencies is evident in anomaly detection and predictive analysis for dynamic networks. This paper studies a new class of graph dependencies called Temporal Graph Functional Dependencies (TGFDs). TGFDs generalize conventional functional dependencies to a collection of graph snapshots induced by time intervals, and enforce both topological constraints and attribute value dependencies that must be satisfied by these snapshots. (1) We establish the complexity results for satisfiability and implication of TGFDs, and verify that these problems do not become harder than their GFDs counterparts. (2) We propose a sound and complete axiomatization system for TGFDs. (3) We also present an efficient parallel algorithm to detect violations of TGFDs. The algorithm exploits data locality induced by temporal constraints, incremental pattern matching, and load balancing strategies for feasible error detection in large temporal graphs. Our evaluation over real datasets show that our algorithms achieve 29% lower runtimes, and up to +55% in F1-score over existing graph dependencies. PVLDB Reference Format: Morteza Alipourlangouri, Adam Mansfield, Fei Chiang, and Yinghui Wu. Temporal Graph Functional Dependencies. PVLDB, 14(1): XXX-XXX, 2020.

[1]  Yinghui Wu,et al.  Ontology-based Entity Matching in Attributed Graphs , 2019, Proc. VLDB Endow..

[2]  Danai Koutra,et al.  TimeCrunch: Interpretable Dynamic Graph Summarization , 2015, KDD.

[3]  Chao Tian,et al.  Keys for Graphs , 2015, Proc. VLDB Endow..

[4]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[5]  Mohammad Hossein Namaki,et al.  Discovering Graph Temporal Association Rules , 2017, CIKM.

[6]  Éva Tardos,et al.  An approximation algorithm for the generalized assignment problem , 1993, Math. Program..

[7]  Hans-Peter Kriegel,et al.  Pattern Mining in Frequent Dynamic Subgraphs , 2006, Sixth International Conference on Data Mining (ICDM'06).

[8]  Fabian M. Suchanek,et al.  YAGO3: A Knowledge Base from Multilingual Wikipedias , 2015, CIDR.

[9]  Ping Lu,et al.  Dependencies for Graphs , 2017, PODS.

[10]  Yinghui Wu,et al.  Functional Dependencies for Graphs , 2016, SIGMOD Conference.

[11]  Jian Pei,et al.  On mining cross-graph quasi-cliques , 2005, KDD '05.

[12]  Philip S. Yu,et al.  GraphScope: parameter-free mining of large time-evolving graphs , 2007, KDD '07.

[13]  Jens Lehmann,et al.  DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia , 2015, Semantic Web.

[14]  Yinghui Wu,et al.  Explaining Missing Data in Graphs: A Constraint-based Approach , 2021, 2021 IEEE 37th International Conference on Data Engineering (ICDE).

[15]  Jan Chomicki,et al.  Consistent query answers in inconsistent databases , 1999, PODS '99.

[16]  Wenfei Fan,et al.  Conditional functional dependencies for capturing data inconsistencies , 2008, TODS.

[17]  Yinghui Wu,et al.  Discovering Graph Patterns for Fact Checking in Knowledge Graphs , 2018, DASFAA.

[18]  Markus Krötzsch,et al.  Wikidata , 2014, Commun. ACM.

[19]  Jun Ma,et al.  AutoKnow: Self-Driving Knowledge Collection for Products of Thousands of Types , 2020, KDD.

[20]  Fabian M. Suchanek,et al.  AMIE: association rule mining under incomplete evidence in ontological knowledge bases , 2013, WWW.

[21]  Ping Lu,et al.  Deducing Certain Fixes to Graphs , 2019, Proc. VLDB Endow..

[22]  Yang Xu,et al.  Extending association rules with graph patterns , 2020, Expert Syst. Appl..

[23]  Divesh Srivastava,et al.  Exploring Change - A New Dimension of Data Analytics , 2018, Proc. VLDB Endow..

[24]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[25]  Andy Schürr,et al.  Incremental Graph Pattern Matching , 2006 .

[26]  Mansur R. Kabuka,et al.  Cardinality estimation for the optimization of queries on ontologies , 2007, SGMD.

[27]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[28]  Mario Vento,et al.  A Performance Comparison of Five Algorithms for Graph Isomorphism , 2001 .

[29]  Piotr Augustyniak,et al.  Graph-based representation of behavior in detection and prediction of daily living activities , 2017, Comput. Biol. Medicine.

[30]  Jure Leskovec,et al.  Motifs in Temporal Networks , 2016, WSDM.

[31]  Udayan Khurana,et al.  Storing and Analyzing Historical Graph Data at Scale , 2015, EDBT.

[32]  Christos Faloutsos,et al.  Monitoring Network Evolution using MDL , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[33]  Lise Getoor,et al.  Knowledge Graph Identification , 2013, SEMWEB.

[34]  Balaraman Ravindran,et al.  COMMIT: A Scalable Approach to Mining Communication Motifs from Dynamic Networks , 2015, SIGMOD Conference.

[35]  Ping Lu,et al.  Catching Numeric Inconsistencies in Graphs , 2018, SIGMOD Conference.

[36]  Xin Wang,et al.  Association Rules with Graph Patterns , 2015, Proc. VLDB Endow..

[37]  Fei Chiang,et al.  Discovery of Temporal Graph Functional Dependencies , 2021, CIKM.

[38]  George H. L. Fletcher,et al.  Generating Flexible Workloads for Graph Databases , 2016, Proc. VLDB Endow..

[39]  Heiko Paulheim,et al.  Knowledge graph refinement: A survey of approaches and evaluation methods , 2016, Semantic Web.