Monotonicity properties of blow-up time for nonlinear Schrödinger equation: numerical tests

We consider the focusing nonlinear Schrodinger equation, in the $L^2$-critical and supercritical cases. We investigate numerically the dependence of the blow-up time on a parameter in three cases: dependence upon the coupling constant, when the initial data are fixed; dependence upon the strength of a quadratic oscillation in the initial data when the equation and the initial profile are fixed; finally, dependence upon a damping factor when the initial data are fixed. It turns out that in most situations monotonicity in the evolution of the blow-up time does not occur. In the case of quadratic oscillations in the initial data, with critical nonlinearity, monotonicity holds; this is proven analytically.

[1]  Guy Métivier,et al.  DIFFRACTIVE NONLINEAR GEOMETRIC OPTICS WITH RECTIFICATION , 1998 .

[2]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[3]  N. Mauser,et al.  Numerical study of the Davey-Stewartson system , 2004 .

[4]  Y. Martel Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces , 1997 .

[5]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[6]  G. Perelman On the Formation of Singularities in Solutions of the Critical Nonlinear Schrödinger Equation , 2001 .

[7]  Takayoshi Ogawa,et al.  Blow-up of H1 solution for the nonlinear Schrödinger equation , 1991 .

[8]  R. Glassey On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1977 .

[9]  Gadi Fibich,et al.  Self-Focusing in the Damped Nonlinear Schrödinger Equation , 2001, SIAM J. Appl. Math..

[10]  Guy Métivier,et al.  Diffractive nonlinear geometric optics , 1996 .

[11]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[12]  N. Gavish,et al.  New singular solutions of the nonlinear Schrödinger equation , 2005 .

[13]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[14]  P. Raphaël Sur la dynamique explosive des solutions de l’équation de Schrödinger non linéaire , 2005 .

[15]  Gadi Fibich,et al.  Self-Focusing in the Perturbed and Unperturbed Nonlinear Schrödinger Equation in Critical Dimension , 1999, SIAM J. Appl. Math..

[16]  T. Cazenave,et al.  Rapidly decaying solutions of the nonlinear Schrödinger equation , 1992 .

[17]  Christophe Besse,et al.  A Relaxation Scheme for the Nonlinear Schrödinger Equation , 2004, SIAM J. Numer. Anal..

[18]  Michael I. Weinstein,et al.  On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations , 1986 .

[19]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[20]  Frank Merle,et al.  On universality of blow-up profile for L2 critical nonlinear Schrödinger equation , 2004 .

[21]  Jean Bourgain,et al.  Construction of blowup solutions for the nonlinear Schr ? odinger equation with critical nonlineari , 1997 .

[22]  Weizhu Bao,et al.  Effective One Particle Quantum Dynamics of Electrons: A Numerical Study of the Schrodinger-Poisson-X alpha Model , 2003 .

[23]  Frank Merle,et al.  Profiles and Quantization of the Blow Up Mass for Critical Nonlinear Schrödinger Equation , 2005 .

[24]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[25]  Pierre Raphael Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation , 2005 .

[26]  Taylor D. Grow,et al.  Self-focusing dynamics of coupled optical beams , 2007 .

[27]  J. Ginibre,et al.  Smoothing properties and retarded estimates for some dispersive evolution equations , 1992 .

[28]  Hayato Nawa,et al.  ASYMPTOTIC AND LIMITING PROFILES OF BLOWUP SOLUTIONS OF THE NONLINEAR SCHRODINGER EQUATION WITH CRITICAL POWER , 1999 .

[29]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[30]  F. Merle,et al.  Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power , 1993 .

[31]  Gadi Fibich,et al.  Self-focusing Distance of Very High Power Laser Pulses. , 2005, Optics express.

[32]  Frank Merle,et al.  Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity , 1990 .

[33]  Chris J. Budd Asymptotics of Multibump Blow-up Self-Similar Solutions of the Nonlinear Schrödinger Equation , 2002, SIAM J. Appl. Math..

[34]  K. Yajima Existence of solutions for Schrödinger evolution equations , 1987 .

[35]  Víctor M. Pérez-García,et al.  Numerical methods for the simulation of trapped nonlinear Schrödinger systems , 2003, Appl. Math. Comput..

[36]  YeYaojun GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS , 2005 .

[37]  Christophe Besse,et al.  Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..