Monotonicity properties of blow-up time for nonlinear Schrödinger equation: numerical tests
暂无分享,去创建一个
Christophe Besse | Norbert Mauser | R'emi Carles | N. Mauser | H. Stimming | R. Carles | C. Besse | Hans-Peter Stimming
[1] Guy Métivier,et al. DIFFRACTIVE NONLINEAR GEOMETRIC OPTICS WITH RECTIFICATION , 1998 .
[2] C. Sulem,et al. The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .
[3] N. Mauser,et al. Numerical study of the Davey-Stewartson system , 2004 .
[4] Y. Martel. Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces , 1997 .
[5] Catherine Sulem,et al. The nonlinear Schrödinger equation , 2012 .
[6] G. Perelman. On the Formation of Singularities in Solutions of the Critical Nonlinear Schrödinger Equation , 2001 .
[7] Takayoshi Ogawa,et al. Blow-up of H1 solution for the nonlinear Schrödinger equation , 1991 .
[8] R. Glassey. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1977 .
[9] Gadi Fibich,et al. Self-Focusing in the Damped Nonlinear Schrödinger Equation , 2001, SIAM J. Appl. Math..
[10] Guy Métivier,et al. Diffractive nonlinear geometric optics , 1996 .
[11] T. Tao,et al. Endpoint Strichartz estimates , 1998 .
[12] N. Gavish,et al. New singular solutions of the nonlinear Schrödinger equation , 2005 .
[13] T. Cazenave. Semilinear Schrodinger Equations , 2003 .
[14] P. Raphaël. Sur la dynamique explosive des solutions de l’équation de Schrödinger non linéaire , 2005 .
[15] Gadi Fibich,et al. Self-Focusing in the Perturbed and Unperturbed Nonlinear Schrödinger Equation in Critical Dimension , 1999, SIAM J. Appl. Math..
[16] T. Cazenave,et al. Rapidly decaying solutions of the nonlinear Schrödinger equation , 1992 .
[17] Christophe Besse,et al. A Relaxation Scheme for the Nonlinear Schrödinger Equation , 2004, SIAM J. Numer. Anal..
[18] Michael I. Weinstein,et al. On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations , 1986 .
[19] M. Weinstein. Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .
[20] Frank Merle,et al. On universality of blow-up profile for L2 critical nonlinear Schrödinger equation , 2004 .
[21] Jean Bourgain,et al. Construction of blowup solutions for the nonlinear Schr ? odinger equation with critical nonlineari , 1997 .
[22] Weizhu Bao,et al. Effective One Particle Quantum Dynamics of Electrons: A Numerical Study of the Schrodinger-Poisson-X alpha Model , 2003 .
[23] Frank Merle,et al. Profiles and Quantization of the Blow Up Mass for Critical Nonlinear Schrödinger Equation , 2005 .
[24] Shi Jin,et al. Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..
[25] Pierre Raphael. Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation , 2005 .
[26] Taylor D. Grow,et al. Self-focusing dynamics of coupled optical beams , 2007 .
[27] J. Ginibre,et al. Smoothing properties and retarded estimates for some dispersive evolution equations , 1992 .
[28] Hayato Nawa,et al. ASYMPTOTIC AND LIMITING PROFILES OF BLOWUP SOLUTIONS OF THE NONLINEAR SCHRODINGER EQUATION WITH CRITICAL POWER , 1999 .
[29] V. Zakharov,et al. Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .
[30] F. Merle,et al. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power , 1993 .
[31] Gadi Fibich,et al. Self-focusing Distance of Very High Power Laser Pulses. , 2005, Optics express.
[32] Frank Merle,et al. Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity , 1990 .
[33] Chris J. Budd. Asymptotics of Multibump Blow-up Self-Similar Solutions of the Nonlinear Schrödinger Equation , 2002, SIAM J. Appl. Math..
[34] K. Yajima. Existence of solutions for Schrödinger evolution equations , 1987 .
[35] Víctor M. Pérez-García,et al. Numerical methods for the simulation of trapped nonlinear Schrödinger systems , 2003, Appl. Math. Comput..
[36] YeYaojun. GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS , 2005 .
[37] Christophe Besse,et al. Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..