Dependence between path-length and size in random digital trees

We study the size and the external path length of random tries and show that they are asymptotically independent in the asymmetric case but strongly dependent with small periodic fluctuations in the symmetric case. Such an unexpected behavior is in sharp contrast to the previously known results on random tries that the size is totally positively correlated to the internal path length and that both tend to the same normal limit law. These two dependence examples provide concrete instances of bivariate normal distributions (as limit laws) whose correlation is $0$, $1$ and periodically oscillating. Moreover, the same type of behaviors is also clarified for other classes of digital trees such as bucket digital trees and Patricia tries.

[1]  Mireille Régnier,et al.  New results on the size of tries , 1989, IEEE Trans. Inf. Theory.

[2]  Axel Bacher,et al.  Generating Random Permutations by Coin Tossing , 2017, ACM Trans. Algorithms.

[3]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[4]  Hsien-Kuei Hwang,et al.  Asymptotic variance of random symmetric digital search trees , 2009, Discret. Math. Theor. Comput. Sci..

[5]  Philippe Flajolet,et al.  The Ubiquitous Digital Tree , 2006, STACS.

[6]  Michael Fuchs,et al.  The Wiener Index of Random Digital Trees , 2015, SIAM J. Discret. Math..

[7]  Ludger Rüschendorf,et al.  Survey of Multivariate Aspects of the Contraction Method , 2006, Discret. Math. Theor. Comput. Sci..

[8]  Mireille Régnier,et al.  Analytic variations on bucket selection and sorting , 2000, Acta Informatica.

[9]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..

[10]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[11]  M. V. Wilkes,et al.  The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .

[12]  Philippe Flajolet,et al.  Dynamical Sources in Information Theory : A General Analysis of Trie Structures , 1999 .

[13]  Philippe Jacquet,et al.  Analytical Depoissonization and its Applications , 1998, Theor. Comput. Sci..

[14]  Werner Schachinger,et al.  On the Variance of a Class of Inductive Valuations of Data Structures for Digital Search , 1995, Theor. Comput. Sci..

[15]  L. Rüschendorf,et al.  A general limit theorem for recursive algorithms and combinatorial structures , 2004 .

[16]  Hsien-Kuei Hwang,et al.  Dependence between External Path-Length and Size in Random Tries , 2016, ArXiv.

[17]  H. Prodinger,et al.  ON SOME APPLICATIONS OF FORMULAE OF RAMANUJAN IN THE ANALYSIS OF ALGORITHMS , 1991 .

[18]  Luc Devroye,et al.  Universal Asymptotics for Random Tries and PATRICIA Trees , 2005, Algorithmica.

[19]  Jean Frédéric Myoupo,et al.  Average case analysis-based protocols to initialize packet radio networks , 2003, Wirel. Commun. Mob. Comput..

[20]  Mireille Régnier,et al.  Trie Partitioning Process: Limiting Distributions , 1986, CAAP.

[21]  Raphael Rom,et al.  Multiple Access Protocols: Performance and Analysis , 1990, SIGMETRICS Perform. Evaluation Rev..

[22]  Luc Devroye Universal Limit Laws for Depths in Random Trees , 1998, SIAM J. Comput..

[23]  Hsien-Kuei Hwang,et al.  Dependence and phase changes in random m-ary search trees , 2017, Random Struct. Algorithms.

[24]  Helmut Prodinger,et al.  On the variance of the external path length in a symmetric digital trie , 1989, Discret. Appl. Math..

[25]  Raphael Rom,et al.  Multiple Access Protocols: Performance and Analysis , 1990, SIGMETRICS Perform. Evaluation Rev..

[26]  Michael Fuchs,et al.  A General Central Limit Theorem for Shape Parameters of $m$-ary Tries and PATRICIA Tries , 2014, Electron. J. Comb..

[27]  Hsien-Kuei Hwang,et al.  An analytic approach to the asymptotic variance of trie statistics and related structures , 2013, Theor. Comput. Sci..

[28]  Philippe Flajolet,et al.  Digital Search Trees Revisited , 1986, SIAM J. Comput..