Field effect nanofluidics.

Nanoscale fluid transport through conduits in the 1-100 nm range is termed as nanofluidics. Over the past decade or so, significant scientific and technological advances have occurred in the domain of nanofluidics with a transverse external electrical signal through a dielectric layer permitting control over ionic and fluid flows in these nanoscale conduits. Consequently, this special class of nanofluidic devices is commonly referred to as field effect devices, analogous to the solid-state field effect transistors that form the basis for modern electronics. In this mini-review, we focus on summarizing the recent developments in field effect nanofluidics as a discipline and evaluate both tutorially and critically the scientific and technological advances that have been reported, including a discussion on the future outlook and identifying broad open questions which suggest that there are many breakthroughs still to come in field-effect nanofluidics.

[1]  S. Prakash,et al.  Cation dependent transport in a field effect nanofluidic device , 2015, 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[2]  A. Majumdar,et al.  Field-effect control of protein transport in a nanofluidic transistor circuit , 2006 .

[3]  Zuzanna Siwy,et al.  Ionic selectivity of single nanochannels. , 2008, Nano letters.

[4]  Lukas Nejdl,et al.  Fabrication of solid‐state nanopores and its perspectives , 2015, Electrophoresis.

[5]  P. Bohn,et al.  Ionic transport in nanocapillary membrane systems , 2012, Journal of Nanoparticle Research.

[6]  José A. Manzanares,et al.  Gating of Nanopores: Modeling and Implementation of Logic Gates , 2010 .

[7]  Seong J. Cho,et al.  Tunable ionic transport for a triangular nanochannel in a polymeric nanofluidic system. , 2013, ACS nano.

[8]  Bo Yu,et al.  Nanochannel electroporation delivers precise amounts of biomolecules into living cells. , 2011, Nature nanotechnology.

[9]  A. Majumdar,et al.  Evaporation-induced cavitation in nanofluidic channels , 2012, Proceedings of the National Academy of Sciences.

[10]  S. Brueck,et al.  Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide. , 2008, Lab on a chip.

[11]  R. Ghodssi,et al.  Fabrication challenges for indium phosphide microsystems , 2015 .

[12]  L. Yobas,et al.  Slowing DNA Translocation in a Nanofluidic Field-Effect Transistor. , 2016, ACS nano.

[13]  M. Yoda,et al.  Electrokinetically driven reversible banding of colloidal particles near the wall. , 2013, Lab on a chip.

[14]  H. Morgan,et al.  Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[15]  H. Cho,et al.  A facile route for the fabrication of large-scale gate-all-around nanofluidic field-effect transistors with low leakage current. , 2012, Lab on a chip.

[16]  M. Reed,et al.  Field-effect reconfigurable nanofluidic ionic diodes. , 2011, Nature communications.

[17]  P. Renaud,et al.  Transport phenomena in nanofluidics , 2008 .

[18]  Shaurya Prakash,et al.  Surface modification in microsystems and nanosystems , 2009 .

[19]  Michael Seul,et al.  Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow , 1997, Nature.

[20]  Shizhi Qian,et al.  Ionic current rectification in a conical nanofluidic field effect transistor , 2011 .

[21]  D. A. Saville,et al.  Field-Induced Layering of Colloidal Crystals , 1996, Science.

[22]  P. Yang,et al.  Gated proton transport in aligned mesoporous silica films. , 2008, Nature materials.

[23]  R. Schasfoort,et al.  Field-effect flow control for microfabricated fluidic networks , 1999, Science.

[24]  Paul W. Bohn,et al.  Electric field mediated transport in nanometer diameter channels , 1998 .

[26]  Castellanos,et al.  AC Electric-Field-Induced Fluid Flow in Microelectrodes. , 1999, Journal of colloid and interface science.

[27]  Jens Anders Branebjerg,et al.  Microfluidics-a review , 1993 .

[28]  Martin Z. Bazant,et al.  Fast ac electro-osmotic micropumps with nonplanar electrodes , 2006 .

[29]  Matsuhiko Nishizawa,et al.  Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity , 1995, Science.

[30]  J. Eijkel,et al.  Nanofluidic technology for biomolecule applications: a critical review. , 2010, Lab on a chip.

[31]  J. Eijkel,et al.  Principles and applications of nanofluidic transport. , 2009, Nature nanotechnology.

[32]  Alex Smolyanitsky,et al.  Field effect modulation of ionic conductance of cylindrical silicon-on-insulator nanopore array , 2010 .

[33]  S. Pennathur,et al.  Electrokinetic transport in nanochannels. 2. Experiments. , 2005, Analytical chemistry.

[34]  Wouter van der Wijngaart,et al.  Modeling and simulation of electrostatically gated nanochannels. , 2013, Advances in colloid and interface science.

[35]  J. Heath,et al.  Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors. , 2009, Nano letters.

[36]  Bharat Bhushan,et al.  Theory, fabrication and applications of microfluidic and nanofluidic biosensors , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  H. Morgan,et al.  Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[38]  Cheng S. Lee,et al.  Direct control of the electroosmosis in capillary zone electrophoresis by using an external electric field , 1990 .

[39]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[40]  B. J. Yoon,et al.  Sub-10 nm transparent all-around-gated ambipolar ionic field effect transistor. , 2015, Nanoscale.

[41]  Ronald W. Davis,et al.  Control of DNA capture by nanofluidic transistors. , 2012, ACS nano.

[42]  Chun Yang,et al.  Advances in electrokinetics and their applications in micro/nano fluidics , 2012 .

[43]  Johannes G.E. Gardeniers,et al.  Field-effect control of electro-osmotic flow in microfluidic networks , 2005 .

[44]  J. Eijkel,et al.  Energy conversion in microsystems: is there a role for micro/nanofluidics? , 2007, Lab on a chip.

[45]  P. Renaud,et al.  An improved model for predicting electrical conductance in nanochannels. , 2015, Physical chemistry chemical physics : PCCP.

[46]  Shizhi Qian,et al.  Gate manipulation of ionic conductance in a nanochannel with overlapped electric double layers , 2015 .

[47]  Davood Askari,et al.  Performance improvement of an AC electroosmotic micropump by hydrophobic surface modification , 2013 .

[48]  A. Majumdar,et al.  Electrochemomechanical Energy Conversion in Nanofluidic Channels , 2004 .

[49]  Zhijun Jiang,et al.  Fabrication of nanopores with embedded annular electrodes and transverse carbon nanotube electrodes , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[50]  Katsuhiro Shirono,et al.  Nanofluidic diode and bipolar transistor. , 2005, Nano letters.

[51]  M. Pinti,et al.  Fabrication of Centimeter Long, Ultra-Low Aspect Ratio Nanochannel Networks in Borosilicate Glass Substrates , 2013 .

[52]  Ellis Meng,et al.  Review of polymer MEMS micromachining , 2015 .

[53]  Hayes,et al.  Electroosmotic flow control of fluids on a capillary electrophoresis microdevice using an applied external voltage , 2000, Analytical chemistry.

[54]  Stephen C Jacobson,et al.  Transport and sensing in nanofluidic devices. , 2011, Annual review of analytical chemistry.

[55]  Stefan De Gendt,et al.  Effect of hafnium germanate on the interface of HfO2/germanium metal oxide semiconductor devices , 2006 .

[56]  P. Renaud,et al.  Ion transport through nanoslits dominated by the effective surface charge , 2005 .

[57]  Shizhi Qian,et al.  Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores. , 2009, Journal of colloid and interface science.

[58]  S. Pennathur,et al.  Electrokinetic transport in nanochannels. 1. Theory. , 2005, Analytical chemistry.

[59]  Arun Majumdar,et al.  Anomalous ion transport in 2-nm hydrophilic nanochannels. , 2010, Nature nanotechnology.

[60]  S Mohammadi,et al.  A nanofluidic channel with embedded transverse nanoelectrodes , 2009, Nanotechnology.

[61]  S. Soper,et al.  Flexible fabrication and applications of polymer nanochannels and nanoslits. , 2011, Chemical Society reviews.

[62]  A. Ewing,et al.  Electroosmotic flow control and surface conductance in capillary zone electrophoresis. , 1993, Analytical chemistry.

[63]  Shizhi Qian,et al.  Field effect control of electrokinetic transport in micro/nanofluidics , 2012 .

[64]  Shizhi Qian,et al.  pH-regulated ionic conductance in a nanochannel with overlapped electric double layers. , 2015, Analytical chemistry.

[65]  Seungwu Han,et al.  Investigation of field effects in a solid-state nanopore transistor. , 2015, Physical chemistry chemical physics : PCCP.

[66]  A. Majumdar,et al.  Electrostatic control of ions and molecules in nanofluidic transistors. , 2005, Nano letters.

[67]  D. Grahame,et al.  Electrode Processes and the Electrical Double Layer , 1955 .

[68]  S. Prakash,et al.  Transport of multicomponent, multivalent electrolyte solutions across nanocapillaries , 2016 .

[69]  Shizhi Qian,et al.  Gate modulation of proton transport in a nanopore. , 2016, Physical chemistry chemical physics : PCCP.

[70]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[71]  G. Timp,et al.  Single cell transfection with single molecule resolution using a synthetic nanopore. , 2014, Nano letters.

[72]  Ece Isenbike Ozalp,et al.  Modeling of electrically controlled molecular diffusion in a nanofluidic channel , 2015 .

[73]  Yuxing Ben,et al.  Theoretical prediction of fast 3D AC electro-osmotic pumps. , 2006, Lab on a chip.

[74]  A T Conlisk,et al.  Mass transfer and flow in electrically charged micro- and nanochannels. , 2002, Analytical chemistry.

[75]  E. Charlaix,et al.  Nanofluidics, from bulk to interfaces. , 2009, Chemical Society reviews.

[76]  Manoj Kumar,et al.  Effect of gate length and dielectric thickness on ion and fluid transport in a fluidic nanochannel. , 2012, Lab on a chip.

[77]  C. L. Rice,et al.  Electrokinetic Flow in a Narrow Cylindrical Capillary , 1965 .

[78]  A. Ewing,et al.  Electroosmotic flow control and monitoring with an applied radial voltage for capillary zone electrophoresis. , 1992, Analytical chemistry.

[79]  D. Burgreen,et al.  Electrokinetic Flow in Ultrafine Capillary Slits1 , 1964 .

[80]  J. Sweedler,et al.  Nanofluidics in chemical analysis. , 2010, Chemical Society reviews.

[81]  M. R. Bown,et al.  AC electroosmotic flow in a DNA concentrator , 2006 .

[82]  C. Haynes,et al.  Globular proteins at solid/liquid interfaces , 1994 .

[83]  T. Squires,et al.  Induced charge electro-osmosis over controllably contaminated electrodes. , 2010, Physical review letters.

[84]  G. López,et al.  Electrokinetic transport and separations in fluidic nanochannels , 2007, Electrophoresis.

[85]  Yi-Chung Tung,et al.  A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis. , 2013, Lab on a chip.

[86]  A. Herr,et al.  Microfluidics: reframing biological enquiry , 2015, Nature Reviews Molecular Cell Biology.

[87]  Prashanta Dutta,et al.  Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles. , 2016, Biomicrofluidics.

[88]  N. Aluru,et al.  Controlling the ionic current rectification factor of a nanofluidic/microfluidic interface with symmetric nanocapillary interconnects. , 2015, Analytical chemistry.

[89]  S. Prakash,et al.  A three-state nanofluidic field effect switch. , 2015, Nano letters.

[90]  C. Dekker,et al.  Surface-charge-governed ion transport in nanofluidic channels. , 2004, Physical review letters.

[91]  Olivier Sudre,et al.  Control of ionic transport through gated single conical nanopores , 2009, Analytical and bioanalytical chemistry.

[92]  H. Zambrano,et al.  Electrokinetic transport in silica nanochannels with asymmetric surface charge , 2015 .

[93]  Patrick Tabeling,et al.  Physics and technological aspects of nanofluidics. , 2014, Lab on a chip.

[94]  Z. Siwy,et al.  Fabrication of a synthetic nanopore ion pump. , 2002, Physical review letters.

[95]  M. Bazant,et al.  Induced-charge electro-osmosis , 2003, Journal of Fluid Mechanics.

[96]  T. Squires,et al.  Induced charge electroosmosis micropumps using arrays of Janus micropillars. , 2014, Lab on a chip.

[97]  J. Eijkel,et al.  Nanofluidics in point of care applications. , 2014, Lab on a chip.

[98]  Sung-Wook Nam,et al.  Ionic field effect transistors with sub-10 nm multiple nanopores. , 2009, Nano letters.

[99]  M. Reed,et al.  Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications , 2014, Nanotechnology.

[100]  J.V. Sweedler,et al.  Nanofluidics: Systems and Applications , 2008, IEEE Sensors Journal.