The 3D rRNA modification maps database: with interactive tools for ribosome analysis

The 3D rRNA modification maps database is the first general resource of information about the locations of modified nucleotides within the 3D structure of the full ribosome, with mRNA and tRNAs in the A-, P- and E-sites. The database supports analyses for several model organisms, including higher eukaryotes, and enables users to construct 3D maps for other organisms. Data are provided for human and plant (Arabidopsis) ribosomes, and for other representative organisms from eubacteria, archaea and eukarya. Additionally, the database integrates information about positions of modifications within rRNA sequences and secondary structures, as well as links to other databases and resources about modifications and their biosynthesis. Displaying positions of modified nucleotides is fully manageable. Views of each modified nucleotide are controlled by individual buttons and buttons also control the visibility of different ribosomal molecular components. A section called ‘Paint Your Own’ enables the user to create a 3D modification map for rRNA from any organism where sites of modification are known. This section also provides capabilities for visualizing nucleotides of interest in rRNA or tRNA, as well as particular amino acids in ribosomal proteins. The database can be accessed at http://people.biochem.umass.edu/fournierlab/3dmodmap/

[1]  Wayne A. Decatur,et al.  rRNA modifications and ribosome function. , 2002, Trends in biochemical sciences.

[2]  M. Fournier,et al.  Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. , 2003, Molecular cell.

[3]  Kara Dolinski,et al.  Saccharomyces genome database: Underlying principles and organisation , 2004, Briefings Bioinform..

[4]  R. Terns,et al.  Mechanisms and functions of RNA-guided RNA modification , 2004 .

[5]  J Ofengand,et al.  Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. , 1997, Journal of molecular biology.

[6]  Liang-Hu Qu,et al.  A novel experimental approach for systematic identification of box H/ACA snoRNAs from eukaryotes , 2005, Nucleic acids research.

[7]  J. Bachellerie,et al.  Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. , 2000, Journal of molecular biology.

[8]  B. Lapeyre Conserved ribosomal RNA modification and their putative roles in ribosome biogenesis and translation , 2004 .

[9]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[10]  Jürgen Brosius,et al.  RNomics in Drosophila melanogaster: identification of 66 candidates for novel non-messenger RNAs , 2003, Nucleic acids research.

[11]  Gwenael Badis,et al.  The complete set of H/ACA snoRNAs that guide rRNA pseudouridylations in Saccharomyces cerevisiae. , 2005, RNA.

[12]  J. Ni,et al.  Small Nucleolar RNAs Direct Site-Specific Synthesis of Pseudouridine in Ribosomal RNA , 1997, Cell.

[13]  Laurent Lestrade,et al.  snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs , 2005, Nucleic Acids Res..

[14]  Jef Rozenski,et al.  The Small Subunit rRNA Modification Database , 2004, Nucleic Acids Res..

[15]  S. Eddy,et al.  Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics. , 2003, Nucleic acids research.

[16]  Vincent Moulton,et al.  A Search for H/ACA SnoRNAs in Yeast Using MFE Secondary Structure Prediction , 2003, Bioinform..

[17]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[18]  Marcin Feder,et al.  MODOMICS: a database of RNA modification pathways , 2005, Nucleic Acids Res..

[19]  Tamás Kiss,et al.  Site-Specific Pseudouridine Formation in Preribosomal RNA Is Guided by Small Nucleolar RNAs , 1997, Cell.

[20]  M. Ares,et al.  Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Hüttenhofer,et al.  RNomics: an experimental approach that identifies 201 candidates for novel, small, non‐messenger RNAs in mouse , 2001, The EMBO journal.

[22]  Wayne A. Decatur,et al.  Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. , 2004, Nucleic acids research.

[23]  Peter Schattner,et al.  The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs , 2005, Nucleic Acids Res..

[24]  J. Ofengand,et al.  Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli. , 2001, RNA.

[25]  Ming Zhang,et al.  Sno/scaRNAbase: a curated database for small nucleolar RNAs and cajal body-specific RNAs , 2006, Nucleic Acids Res..

[26]  S. Eddy,et al.  A computational screen for methylation guide snoRNAs in yeast. , 1999, Science.

[27]  R. Unger,et al.  A genome-wide analysis of C/D and H/ACA-like small nucleolar RNAs in Trypanosoma brucei reveals a trypanosome-specific pattern of rRNA modification. , 2005, RNA.

[28]  Wayne A. Decatur,et al.  New bioinformatic tools for analysis of nucleotide modifications in eukaryotic rRNA. , 2007, RNA.

[29]  Liang-Hu Qu,et al.  snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome , 2006, Nucleic acids research.

[30]  Wayne A. Decatur,et al.  RNA‐modifying machines in archaea , 2003, Molecular microbiology.

[31]  Angel Herráez,et al.  Biomolecules in the computer: Jmol to the rescue , 2006, Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology.

[32]  R. Unger,et al.  pattern of rRNA modification reveals a trypanosome-specificTrypanosoma bruceiRNAs in A genome-wide analysis of C / D and H / ACA-like small nucleolar , 2005 .

[33]  Paul D. Shaw,et al.  Plant snoRNA database , 2003, Nucleic Acids Res..

[34]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[35]  Tamás Kiss,et al.  Site-Specific Ribose Methylation of Preribosomal RNA: A Novel Function for Small Nucleolar RNAs , 1996, Cell.

[36]  D. Tollervey,et al.  Microarray detection of novel nuclear RNA substrates for the exosome , 2006, Yeast.

[37]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[38]  Peter D. Karp,et al.  EcoCyc: a comprehensive database resource for Escherichia coli , 2004, Nucleic Acids Res..

[39]  Liang-Hu Qu,et al.  Genome-wide analyses of two families of snoRNA genes from Drosophila melanogaster, demonstrating the extensive utilization of introns for coding of snoRNAs. , 2005, RNA.

[40]  J. Ofengand Ribosomal RNA pseudouridines and pseudouridine synthases , 2002, FEBS letters.

[41]  Todd M Lowe,et al.  A computational screen for mammalian pseudouridylation guide H/ACA RNAs. , 2006, RNA.

[42]  Narayanan Eswar,et al.  Structure of the 80S Ribosome from Saccharomyces cerevisiae—tRNA-Ribosome and Subunit-Subunit Interactions , 2001, Cell.

[43]  Jürgen Brosius,et al.  Experimental RNomics Identification of 140 Candidates for Small Non-Messenger RNAs in the Plant Arabidopsis thaliana , 2002, Current Biology.

[44]  J. Ballesta,et al.  Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation , 2004, The EMBO journal.

[45]  J. Dinman,et al.  Optimization of Ribosome Structure and Function by rRNA Base Modification , 2007, PloS one.

[46]  U. Meier,et al.  The many facets of H/ACA ribonucleoproteins , 2005, Chromosoma.

[47]  Inna Myslyuk,et al.  Genome-Wide Analysis of C/D and H/ACA-Like Small Nucleolar RNAs in Leishmania major Indicates Conservation among Trypanosomatids in the Repertoire and in Their rRNA Targets , 2006, Eukaryotic Cell.

[48]  Henri Grosjean,et al.  Fine-tuning of RNA functions by modification and editing , 2005 .

[49]  T. Kiss Biogenesis of small nuclear RNPs , 2004, Journal of Cell Science.

[50]  B. Maden The numerous modified nucleotides in eukaryotic ribosomal RNA. , 1990, Progress in nucleic acid research and molecular biology.

[51]  S. Eddy,et al.  Archaeal Guide RNAs Function in rRNA Modification in the Eukaryotic Nucleus , 2002, Current Biology.

[52]  R Parker,et al.  Analysis of the yeast genome: identification of new non-coding and small ORF-containing RNAs. , 1997, Nucleic acids research.

[53]  Jef Rozenski,et al.  The RNA Modification Database: 1999 update , 1999, Nucleic Acids Res..

[54]  Jules Gagnon,et al.  Genome-Wide Prediction and Analysis of Yeast RNase III-Dependent snoRNA Processing Signals , 2005, Molecular and Cellular Biology.