Serre’s Reduction of Linear Functional Systems

Serre’s reduction aims at reducing the number of unknowns and equations of a linear functional system. Finding an equivalent presentation of a linear functional system containing fewer equations and fewer unknowns can generally simplify both the study of the structural properties of the linear functional system and of different numerical analysis issues, and it can sometimes help solving the linear functional system. The purpose of this paper is to present a constructive approach to Serre’s reduction for determined and underdetermined linear functional systems.

[1]  Alban Quadrat,et al.  Formal Elimination for Multidimensional Systems and Applications to Control Theory , 2000, Math. Control. Signals Syst..

[2]  U. Oberst Multidimensional constant linear systems , 1990, EUROCAST.

[3]  Alban Quadrat,et al.  The Fractional Representation Approach to Synthesis Problems: An Algebraic Analysis Viewpoint Part I: (Weakly) Doubly Coprime Factorizations , 2003, SIAM J. Control. Optim..

[4]  C. Storey,et al.  Equivalence of matrices over R[s, z] : a counter-example , 1981 .

[5]  J. Loiseau Topics in time delay systems : analysis, algorithms and control , 2009 .

[6]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[7]  Georg Regensburger,et al.  Gröbner bases in control theory and signal processing , 2007 .

[8]  C. Weibel,et al.  AN INTRODUCTION TO HOMOLOGICAL ALGEBRA , 1996 .

[9]  Pierre Rouchon,et al.  Some examples of linear systems with delays , 1997 .

[10]  A. Quadrat Controllability and differential flatness of linear analytic ordinary differential systems , 2010 .

[11]  Tudor C. Ionescu,et al.  TOPICS IN TIME DELAY SYSTEMS: ANALYSIS, ALGORITHMS AND CONTROL , 2009 .

[12]  T. Cluzeau,et al.  Factoring and decomposing a class of linear functional systems , 2008 .

[13]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[14]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[15]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[16]  R. Baer Erweiterung von Gruppen und ihren Isomorphismen , 1934 .

[17]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[18]  A. Quadrat,et al.  Applications of the Quillen-Suslin theorem to multidimensional systems theory , 2007 .

[19]  J. Rotman An Introduction to Homological Algebra , 1979 .

[20]  A. Quadrat,et al.  OreModules: A Symbolic Package for the Study of Multidimensional Linear Systems , 2007 .

[21]  A. Manitius Feedback controllers for a wind tunnel model involving a delay: Analytical design and numerical simulation , 1984 .

[22]  Tsit Yuen Lam,et al.  Lectures on modules and rings , 1998 .

[23]  E. Zerz Topics in Multidimensional Linear Systems Theory , 2000 .

[24]  A. Quadrat,et al.  On the Baer extension problem for multidimensional linear systems , 2007 .

[25]  Alban Quadrat,et al.  Algebraic analysis of linear multidimensional control systems , 1999 .

[26]  Alban Quadrat,et al.  Effective algorithms for parametrizing linear control systems over Ore algebras , 2005, Applicable Algebra in Engineering, Communication and Computing.

[27]  Alban Quadrat,et al.  The Fractional Representation Approach to Synthesis Problems: An Algebraic Analysis Viewpoint Part II: Internal Stabilization , 2003, SIAM J. Control. Optim..

[28]  M. S. Boudellioua,et al.  Reduction of linear systems based on Serre ’ s theorem , 2008 .

[29]  Pierre Rouchon,et al.  Tracking control of a vibrating string with an interior mass viewed as delay system , 1998 .

[30]  Jean-Pierre Serre,et al.  Sur les modules projectifs , 1961 .

[31]  T. Cluzeau,et al.  Serre's reduction of linear systems of partial differential equations with holonomic adjoints , 2010 .

[32]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[33]  A. Quadrat,et al.  Baer ’ s extension problem for multidimensional linear systems , 2008 .

[34]  C. SIAMJ.,et al.  The Fractional Representation Approach to Synthesis Problems: An Algebraic Analysis Viewpoint Part I: (Weakly) Doubly Coprime Factorizations , 2003, SIAM J. Control. Optim..

[35]  Viktor Levandovskyy,et al.  Obstructions to Genericity in Study of Parametric Problems in Control Theory , 2007, ArXiv.

[36]  P. Cartier Problèmes mathématiques de la théorie quantique des champs II : prolongement analytique , 1974 .

[37]  M. S. Boudellioua,et al.  SOME FURTHER RESULTS CONCERNING MATRICES WITH ELEMENTS IN A POLYNOMIAL RING. , 1986 .

[38]  Alban Quadrat,et al.  Computation of bases of free modules over the Weyl algebras , 2007, J. Symb. Comput..

[39]  W. Wolovich State-space and multivariable theory , 1972 .

[40]  J. Kato Stability in functional differential equations , 1980 .

[41]  M. G. Frost,et al.  Equivalence of a matrix over R [s,z] with its Smith form , 1978 .

[42]  N. Bose Multidimensional systems theory and applications , 1995 .

[43]  S. Żak,et al.  Smith forms over R[z_{1},z_{2}] , 1983 .