The Reasonable Effectiveness of Model Theory in Mathematics

In this article we first provide some background on why (Sections 1 and 2) the applications of model theory across mathematics are reasonable. Section 3 describe some of these applications. While we allude to a number of well-known results over the last seventy years, we focus on three areas that have developed in the last five. We survey the parallel developments of certain combinatorial notions in learning theory (Section 3.1) and in functional analysis (Section 3.2) with fundamental notions of stability theory. Section 4 applies the study of trivial weakly minimal sets, structures very near the base of the stability hierarchy, to count the number of finite models of classes of models closed under substructure.

[1]  Dana,et al.  JSL volume 88 issue 4 Cover and Front matter , 1983, The Journal of Symbolic Logic.

[2]  U. Kohlenbach PROOF-THEORETIC METHODS IN NONLINEAR ANALYSIS , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[3]  G. Laumon,et al.  A Series of Modern Surveys in Mathematics , 2000 .

[4]  Michael Harris,et al.  Mathematics without Apologies: Portrait of a Problematic Vocation , 2015 .

[5]  Dividing lines in unstable theories and subclasses of Baire 1 functions , 2019, Archive for Mathematical Logic.

[6]  Penelope Maddy,et al.  What Do We Want a Foundation to Do? , 2019, Synthese Library.

[7]  Itay Kaplan,et al.  On uniform definability of types over finite sets for NIP formulas , 2019, J. Math. Log..

[8]  Michael C. Laskowski,et al.  Uniformly Bounded Arrays and Mutually Algebraic Structures , 2020, Notre Dame J. Formal Log..

[9]  A. Pillay,et al.  DEFINABLE SETS IN ORDERED STRUCTURES. I , 1986 .

[10]  Hunter Chase,et al.  Model Theory and Machine Learning , 2019, Bull. Symb. Log..

[11]  Siddharth Bhaskar THICKET DENSITY , 2021, The Journal of Symbolic Logic.

[12]  Hans Adler,et al.  Introduction to theories without the independence property , 2008 .

[13]  김미정 대학의 브랜드로서의 이미지에 관한 연구 -미국 캘리포니아 주립대학교(University of California) 10개 캠퍼스의 로고(LOGO) 및 문장(紋章, Seal)을 중심으로- , 2009 .

[14]  L. Dries Remarks on Tarski's problem concerning (R, +, *, exp) , 1984 .

[15]  Remarks on the strict order property , 2019, 1902.05229.

[16]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[17]  David Mumford,et al.  Communications on Pure and Applied Mathematics , 1989 .

[18]  Thomas Scanlon,et al.  Counting special points: Logic, diophantine geometry, and transcendence theory , 2012 .

[19]  John T. Baldwin,et al.  ℵ0-Categoricity and stability of rings , 1977 .

[20]  Deirdre Haskell,et al.  Stable Domination and Independence in Algebraically Closed Valued Fields , 2005, math/0511310.

[21]  J. Freitag,et al.  MODEL THEORY AND COMBINATORICS OF BANNED SEQUENCES , 2018, The Journal of Symbolic Logic.

[22]  J. Freitag,et al.  Ax-Lindemann-Weierstrass with derivatives and the genus 0 Fuchsian groups , 2018, 1811.06583.

[23]  Michael C. Laskowski,et al.  Vapnik-Chervonenkis classes of definable sets , 1992 .

[24]  V. Paxson,et al.  Notices of the American Mathematical Society , 1998 .

[25]  A. Pillay,et al.  Effective bounds for the number of transcendental points on subvarieties of semi-abelian varieties , 2000 .

[26]  James Freitag,et al.  Bounds in Query Learning , 2019, COLT.

[27]  S. Shelah,et al.  Keisler’s order has infinitely many classes , 2015, 1503.08341.

[28]  John T. Baldwin,et al.  Fundamentals of Stability Theory , 2017, Perspectives in Logic.

[29]  David Marker,et al.  The Number of Countable Differentially Closed Fields , 2007, Notre Dame J. Formal Log..

[30]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[31]  J. Spencer,et al.  Zero-one laws for sparse random graphs , 1988 .

[32]  Anand Pillay,et al.  Remarks on the NIP in a model , 2017, Math. Log. Q..

[33]  M. Rossberg,et al.  The Bulletin of Symbolic Logic , 2015 .

[34]  A. Kechris Global Aspects of Ergodic Group Actions , 2010 .

[35]  J. Oxford,et al.  Oxford , 1968, Leaving The Arena.

[36]  A. Wilkie Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function , 1996 .

[37]  John T. Baldwin,et al.  Model Theory and the Philosophy of Mathematical Practice: Formalization without Foundationalism , 2018 .

[38]  Maryanthe Malliaris,et al.  On unavoidable-induced subgraphs in large prime graphs , 2018, J. Graph Theory.

[39]  John T. Baldwin,et al.  Finite and Infinite Model Theory - A Historical Perspective , 2000, Log. J. IGPL.

[40]  Stability , 1973 .

[41]  Takuya Kon-no,et al.  Transactions of the American Mathematical Society , 1996 .

[42]  Saharon Shelah,et al.  Classification theory - and the number of non-isomorphic models, Second Edition , 1990, Studies in logic and the foundations of mathematics.

[43]  Béla Bollobás,et al.  The Penultimate Rate of Growth for Graph Properties , 2001, Eur. J. Comb..

[44]  A. Wilkie,et al.  O-Minimality and Diophantine Geometry , 2015 .

[45]  W. B.,et al.  (1) Proceedings of the London Mathematical Society (2) Journal of the London Mathematical Society , 1927, Nature.

[46]  C. Ward Henson,et al.  Model Theory with Applications to Algebra and Analysis: Model theory for metric structures , 2008 .

[47]  A. Tarski,et al.  Sur les ensembles définissables de nombres réels , 1931 .

[48]  J. A. Coffa,et al.  The Semantic Tradition from Kant to Carnap: To the Vienna Station. , 1994 .

[49]  David Marker Book Review: Tame topology and o-minimal structures , 2000 .

[50]  Michael C. Laskowski,et al.  Compression Schemes, Stable Definable Families, and o-Minimal Structures , 2010, Discret. Comput. Geom..

[52]  R. Grossberg,et al.  $\mu$-abstract elementary classes and other generalizations , 2015, 1509.07377.

[53]  Alfred Tarski,et al.  On the Application of Symbolic Logic to Algebra , 1953 .

[54]  Michael C. Laskowski,et al.  Jumps in speeds of hereditary properties in finite relational languages , 2018, J. Comb. Theory, Ser. B.