Complexity Reduction for Calibration to American Options

American put options are among the most frequently traded single stock options, and their calibration is computationally challenging since no closed-form expression is available. Due to their higher flexibility compared with European options, the mathematical model involves additional constraints, and a variational inequality is obtained. We use the Heston stochastic volatility model to describe the price of a single stock option. In order to speed up the calibration process, we apply two model-reduction strategies. First, we introduce a reduced basis method. We thereby reduce the computational complexity of solving the parametric partial differential equation drastically, compared with a classical finite-element method, which makes applications of standard minimization algorithms for the calibration significantly faster. Second, we apply the so-called de-Americanization strategy. Here, the main idea is to reformulate the calibration problem for American options as a problem for European options and to exploit closed-form solutions. These reduction techniques are systematically compared and tested for both synthetic and market data sets.<br>

[1]  Karsten Urban,et al.  On Noncoercive Variational Inequalities , 2014, SIAM J. Numer. Anal..

[2]  C. Schwab,et al.  Computational Methods for Quantitative Finance: Finite Element Methods for Derivative Pricing , 2013 .

[3]  Maciej Balajewicz,et al.  Reduced Order Models for Pricing American Options under Stochastic Volatility and Jump-Diffusion Models , 2016, ICCS.

[4]  H. Engl,et al.  Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates , 2005 .

[5]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[6]  Yves Achdou,et al.  Numerical Procedure for Calibration of Volatility with American Options , 2005 .

[7]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[8]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[9]  Gunter Winkler,et al.  Valuation of Options in Heston's Stochastic Volatility Model Using Finite Element Methods 1 , 2001 .

[10]  M. Rubinstein. Implied Binomial Trees , 1994 .

[11]  O Burkovska,et al.  Calibration to American options: numerical investigation of the de-Americanization method , 2016, Quantitative finance.

[12]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[13]  Karsten Urban,et al.  A Reduced Basis Method for Parabolic Partial Differential Equations with Parameter Functions and Application to Option Pricing , 2014, 1408.2709.

[14]  Bernard Haasdonk,et al.  Convergence Rates of the POD–Greedy Method , 2013 .

[15]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[16]  Yves Achdou An Inverse Problem for a Parabolic Variational Inequality Arising in Volatility Calibration with American Options , 2005, SIAM J. Control. Optim..

[17]  Benjamin Peherstorfer,et al.  Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation , 2015, Adv. Comput. Math..

[18]  Charbel Farhat,et al.  Projection‐based model reduction for contact problems , 2015, 1503.01000.

[19]  Barbara I. Wohlmuth,et al.  Reduced Basis Methods for Pricing Options with the Black-Scholes and Heston Models , 2014, SIAM J. Financial Math..

[20]  Victor Isakov,et al.  The inverse problem of option pricing , 1997 .

[21]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[22]  O. Burkovska Reduced Basis Methods for Option Pricing and Calibration , 2016 .

[23]  Agnieszka Janek,et al.  C P ] 8 O ct 2 01 0 FX smile in the Heston model 1 , 2010 .

[24]  Kevin Parrott,et al.  Multigrid for American option pricing with stochastic volatility , 1999 .

[25]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[26]  Olivier Pironneau Proper Orthogonal Decomposition for Pricing Options , 2012 .

[27]  Karen Veroy,et al.  A slack approach to reduced-basis approximation and error estimation for variational inequalities , 2016 .

[28]  P. Glasserman,et al.  Pricing American-style securities using simulation , 1997 .

[29]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[30]  Bertram Düring,et al.  High-Order Compact Finite Difference Scheme for Option Pricing in Stochastic Volatility Models , 2010, J. Comput. Appl. Math..

[31]  E. Sachs,et al.  Reduced-Order Models For The Implied Variance Under Local Volatility , 2014 .

[32]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[33]  Olivier Pironneau,et al.  Calibration of options on a reduced basis , 2009, J. Comput. Appl. Math..

[34]  Olivier Pironneau Reduced basis for vanilla and basket options , 2011, Risk Decis. Anal..

[35]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[36]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1978 .

[37]  J. Hull Options, futures, and other derivative securities , 1989 .

[38]  Barbara I. Wohlmuth,et al.  A Reduced Basis Method for Parametrized Variational Inequalities , 2012, SIAM J. Numer. Anal..

[39]  L. Rogers Monte Carlo valuation of American options , 2002 .

[40]  S. Z. Levendorski,et al.  Early exercise boundary and option prices in Levy driven models , 2004 .

[41]  Cornelis W. Oosterlee,et al.  A Fourier-Based Valuation Method for Bermudan and Barrier Options under Heston's Model , 2011, SIAM J. Financial Math..

[42]  T. Sobotka,et al.  On Optimization Techniques for Calibration of Stochastic Volatility Models , 2014 .

[43]  D. Rovas,et al.  Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .

[44]  M. Fu,et al.  Pricing American Options: A Comparison of Monte Carlo Simulation Approaches ⁄ , 2001 .

[45]  Rama Cont,et al.  A Reduced Basis for Option Pricing , 2010, SIAM J. Financial Math..

[46]  W. Schoutens,et al.  A perfect calibration! now what? , 2004 .

[47]  Christian Schneider,et al.  Multiscale methods for the valuation of American options with stochastic volatility , 2012, Int. J. Comput. Math..

[48]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[49]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[50]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[51]  Jens Lohne Eftang,et al.  Reduced Basis Methods for Partial Differential Equations : Evaluation of multiple non-compliant flux-type output functionals for a non-affine electrostatics problem , 2008 .

[52]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[53]  Ekkehard W. Sachs,et al.  Parameter identification in financial market models with a feasible point SQP algorithm , 2012, Comput. Optim. Appl..

[54]  P. Carr,et al.  Stock Options and Credit Default Swaps: A Joint Framework for Valuation and Estimation , 2006 .