Methods to produce optimal designs for multi-channel fiber Bragg gratings (FBGs) with identical or close to identical channel-to-channel spectral characteristics are discussed. The proposed approach consists of three distinct steps. The first two steps (preliminary semi-analytic minimization and subsequent fine-tuning) do not depend on the grating design details, but on the number of channels only and can be readily applied to similar problems in other fields, e.g., in radio-physics and coding theory. The third step (spectral characteristic quality improvement) is FBG field specific. A comparison with other known optimization methods shows that the proposed approach yields generally superior results for small to moderate number of channels (N < 60).