Approximating the combination of belief functions using the fast Mo"bius transform in a coarsened frame

Abstract A method is proposed for reducing the size of a frame of discernment, in such a way that the loss of information content in a set of belief functions is minimized. This method may be seen as a hierarchical clustering procedure applied to the columns of a binary data matrix, using a particular dissimilarity measure. It allows to compute approximations of the mass functions, which can be combined efficiently in the coarsened frame using the fast Mobius transform algorithm, yielding inner and outer approximations of the combined belief function.

[1]  G. Klir,et al.  Uncertainty-based information: Elements of generalized information theory (studies in fuzziness and soft computing). , 1998 .

[2]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[3]  James C. Bezdek,et al.  Uncertainty measures for evidential reasoning II: A new measure of total uncertainty , 1993, Int. J. Approx. Reason..

[4]  Philippe Smets,et al.  The Transferable Belief Model for Quantified Belief Representation , 1998 .

[5]  Dov M. Gabbay,et al.  Handbook of defeasible reasoning and uncertainty management systems: volume 2: reasoning with actual and potential contradictions , 1998 .

[6]  David Harmanec,et al.  Faithful Approximations of Belief Functions , 1999, UAI.

[7]  Thierry Denoeux,et al.  Inner and Outer Approximation of Belief Structures Using a Hierarchical Clustering Approach , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[8]  Philippe Smets,et al.  Computational aspects of the Mobius transformation , 1990, UAI.

[9]  James C. Bezdek,et al.  Uncertainty measures for evidential reasoning I: A review , 1992, Int. J. Approx. Reason..

[10]  Bjørnar Tessem,et al.  Approximations for Efficient Computation in the Theory of Evidence , 1993, Artif. Intell..

[11]  John D. Lowrance,et al.  A Framework for Evidential-Reasoning Systems , 1990, AAAI.

[12]  Thierry Denœux,et al.  Inner and outer approximation of belief structures using a hierarchical clustering approach , 2001 .

[13]  Philippe Smets,et al.  Practical Uses of Belief Functions , 1999, UAI.

[14]  Pekka Orponen,et al.  Dempster's Rule of Combination is #P-Complete , 1990, Artif. Intell..

[15]  Henri Prade,et al.  Representation and combination of uncertainty with belief functions and possibility measures , 1988, Comput. Intell..

[16]  Andrew P. Sage,et al.  Uncertainty in Artificial Intelligence , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  Michael Clarke,et al.  Symbolic and Quantitative Approaches to Reasoning and Uncertainty , 1991, Lecture Notes in Computer Science.

[18]  Thierry Denoeux,et al.  Handling Different Forms of Uncertainty in Regression Analysis: A Fuzzy Belief Structure Approach , 1999, ESCQARU.

[19]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[20]  Robert Kennes,et al.  Computational aspects of the Mobius transformation of graphs , 1992, IEEE Trans. Syst. Man Cybern..

[21]  Philippe Smets,et al.  Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem , 1993, Int. J. Approx. Reason..

[22]  Didier Dubois,et al.  Consonant approximations of belief functions , 1990, Int. J. Approx. Reason..

[23]  Mathias Bauer,et al.  Approximation algorithms and decision making in the Dempster-Shafer theory of evidence - An empirical study , 1997, Int. J. Approx. Reason..

[24]  Nic Wilson Algorithms for Dempster-Shafer Theory , 2000 .