Global Climate and Atmospheric Composition of the Ultra-hot Jupiter WASP-103b from HST and Spitzer Phase Curve Observations

We present thermal phase curve measurements for the hot Jupiter WASP-103b observed with Hubble/WFC3 and Spitzer/IRAC. The phase curves have large amplitudes and negligible hotspot offsets, indicative of poor heat redistribution to the nightside. We fit the phase variation with a range of climate maps and find that a spherical harmonics model generally provides the best fit. The phase-resolved spectra are consistent with blackbodies in the WFC3 bandpass, with brightness temperatures ranging from 1880 ± 40 K on the nightside to 2930 ± 40 K on the dayside. The dayside spectrum has a significantly higher brightness temperature in the Spitzer bands, likely due to CO emission and a thermal inversion. The inversion is not present on the nightside. We retrieved the atmospheric composition and found that it is moderately metal-enriched ($[{\rm{M}}/{\rm{H}}]={23}_{-13}^{+29}\times \mathrm{solar}$) and the carbon-to-oxygen ratio is below 0.9 at 3σ confidence. In contrast to cooler hot Jupiters, we do not detect spectral features from water, which we attribute to partial H2O dissociation. We compare the phase curves to 3D general circulation models and find that magnetic drag effects are needed to match the data. We also compare the WASP-103b spectra to brown dwarfs and young, directly imaged companions. We find that these objects have significantly larger water features, indicating that surface gravity and irradiation environment play an important role in shaping the spectra of hot Jupiters. These results highlight the 3D structure of exoplanet atmospheres and illustrate the importance of phase curve observations for understanding their complex chemistry and physics.

[1]  K. Cruz,et al.  FUNDAMENTAL PARAMETERS AND SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG AND FIELD AGE OBJECTS WITH MASSES SPANNING THE STELLAR TO PLANETARY REGIME , 2015, 1508.01767.

[2]  Laura Kreidberg,et al.  SPIDERMAN: an open-source code to model phase curves and secondary eclipses , 2017, 1711.00494.

[3]  F. Allard,et al.  Models of very-low-mass stars, brown dwarfs and exoplanets , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  D. Deming,et al.  SPECTROSCOPIC EVIDENCE FOR A TEMPERATURE INVERSION IN THE DAYSIDE ATMOSPHERE OF HOT JUPITER WASP-33b , 2015, 1505.01490.

[5]  T. Henning,et al.  High-precision photometry by telescope defocusing – VII. The ultrashort period planet WASP-103 , 2014, 1411.2767.

[6]  Andreas Seifahrt,et al.  TRANSMISSION SPECTROSCOPY OF THE HOT JUPITER WASP-12b FROM 0.7 TO 5 μm , 2013, 1305.1670.

[7]  Sara Seager,et al.  Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy , 2014, Science.

[8]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[9]  Christoph Mordasini,et al.  A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS , 2013, 1306.4329.

[10]  G. Chauvin,et al.  The young, tight, and low-mass binary TWA22AB: a new calibrator for evolutionary models?. Orbit, spe , 2009, 0906.1799.

[11]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[12]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[13]  J. Hagelberg,et al.  Signs of strong Na and K absorption in the transmission spectrum of WASP-103b , 2017, 1708.05737.

[14]  Yifan Zhou,et al.  A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs , 2017, 1703.01301.

[15]  T. Komacek,et al.  Atmospheric Circulations of Hot Jupiters as Planetary Heat Engines , 2017, 1712.07643.

[16]  Heather Knutson,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. II. A UNIFORM ANALYSIS OF NINE PLANETS AND THEIR C TO O RATIOS , 2013, 1309.6663.

[17]  Ichi Tanaka,et al.  RE-EVALUATING WASP-12b: STRONG EMISSION AT 2.315 μm, DEEPER OCCULTATIONS, AND AN ISOTHERMAL ATMOSPHERE , 2012, 1210.4836.

[18]  S. Schmidt,et al.  SpeX SPECTROSCOPY OF UNRESOLVED VERY LOW MASS BINARIES. II. IDENTIFICATION OF 14 CANDIDATE BINARIES WITH LATE-M/EARLY-L AND T DWARF COMPONENTS , 2014, 1408.3089.

[19]  Nicolas B. Cowan,et al.  Inverting Phase Functions to Map Exoplanets , 2008, 0803.3622.

[20]  I. Reid,et al.  Meeting the Cool Neighbors. XII. An Optically Anchored Analysis of the Near-infrared Spectra of L Dwarfs , 2017 .

[21]  Models of Stars, Brown Dwarfs and Exoplanets , 2011 .

[22]  Drake Deming,et al.  The Phase-Dependent Infrared Brightness of the Extrasolar Planet ʊ Andromedae b , 2006, Science.

[23]  Heidelberg,et al.  WASP-8b: CHARACTERIZATION OF A COOL AND ECCENTRIC EXOPLANET WITH SPITZER , 2013, 1303.5468.

[24]  W. Brandner,et al.  A Lucky Imaging search for stellar sources near 74 transit hosts , 2015, 1506.05456.

[25]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[26]  Leslie Hebb,et al.  ON THE ORBIT OF EXOPLANET WASP-12b , 2010, 1003.2763.

[27]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[28]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[29]  Meeting the Cool Neighbors. X. Ultracool Dwarfs from the 2MASS All-Sky Data Release , 2008 .

[30]  Jacob L. Bean,et al.  An HST/WFC3 Thermal Emission Spectrum of the Hot Jupiter HAT-P-7b , 2018, The Astronomical Journal.

[31]  Christoph Mordasini,et al.  THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS , 2016, 1609.03019.

[32]  P. Magain,et al.  High-precision multiwavelength eclipse photometry of the ultra-hot gas giant exoplanet WASP-103 b , 2017, 1711.02566.

[33]  D. Hayes,et al.  Stellar Absolute Fluxes and Energy Distributions from 0.32 to 4.0 μm , 1985 .

[34]  Tommi Koskinen,et al.  Extremely Irradiated Hot Jupiters: Non-oxide Inversions, H− Opacity, and Thermal Dissociation of Molecules , 2018, The Astrophysical Journal.

[35]  J. Grießmeier Detection Methods and Relevance of Exoplanetary Magnetic Fields , 2015 .

[36]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[37]  M. Marley,et al.  THE ATMOSPHERIC CIRCULATION OF A NINE-HOT-JUPITER SAMPLE: PROBING CIRCULATION AND CHEMISTRY OVER A WIDE PHASE SPACE , 2016, 1602.06733.

[38]  A. Showman,et al.  ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS , 2013, 1306.4673.

[39]  Andreas Seifahrt,et al.  A Search for Water in the Atmosphere of HAT-P-26b Using LDSS-3C , 2015 .

[40]  W. D. Cochran,et al.  Kepler’s Optical Phase Curve of the Exoplanet HAT-P-7b , 2009, Science.

[41]  Jacob L. Bean,et al.  A DETECTION OF WATER IN THE TRANSMISSION SPECTRUM OF THE HOT JUPITER WASP-12b AND IMPLICATIONS FOR ITS ATMOSPHERIC COMPOSITION , 2015, 1504.05586.

[42]  Sun Mi Chung,et al.  The Broadband and Spectrally Resolved H-band Eclipse of KELT-1b and the Role of Surface Gravity in Stratospheric Inversions in Hot Jupiters , 2016, 1610.03504.

[43]  James Liebert,et al.  M dwarf spectra from 0.6 to 1.5 micron - A spectral sequence, model atmosphere fitting, and the temperature scale , 1993 .

[44]  Gregory W. Henry Techniques for Automated High-Precision Photometry of Sun-like Stars , 1999 .

[45]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[46]  Sara Seager,et al.  INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE , 2013, 1309.7894.

[47]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[48]  et al,et al.  Toward Spectral Classification of L and T Dwarfs: Infrared and Optical Spectroscopy and Analysis , 2001, astro-ph/0108443.

[49]  Adam J. Burgasser,et al.  The NIRSPEC Brown Dwarf Spectroscopic Survey. I. Low-Resolution Near-Infrared Spectra , 2003, astro-ph/0309257.

[50]  A. Showman,et al.  MAGNETOHYDRODYNAMIC SIMULATIONS OF THE ATMOSPHERE OF HD 209458b , 2014, 1401.5815.

[51]  Vivien Parmentier,et al.  TRANSITIONS IN THE CLOUD COMPOSITION OF HOT JUPITERS , 2016, 1602.03088.

[52]  Jacob L. Bean,et al.  H− Opacity and Water Dissociation in the Dayside Atmosphere of the Very Hot Gas Giant WASP-18b , 2018, 1801.02489.

[53]  T. Evans,et al.  DETECTION OF H2O AND EVIDENCE FOR TiO/VO IN AN ULTRA-HOT EXOPLANET ATMOSPHERE , 2016, 1604.02310.

[54]  J. Bean,et al.  DECIPHERING THE ATMOSPHERIC COMPOSITION OF WASP-12b: A COMPREHENSIVE ANALYSIS OF ITS DAYSIDE EMISSION , 2014, 1406.7567.

[55]  E. Agol,et al.  Phase Curves of WASP-33b and HD 149026b and a New Correlation between Phase Curve Offset and Irradiation Temperature , 2017, 1710.07642.

[56]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[57]  C P McKay,et al.  Thermal structure of Uranus' atmosphere. , 1999, Icarus.

[58]  K. Stassun,et al.  NEAR-INFRARED EMISSION SPECTRUM OF WASP-103B USING HUBBLE SPACE TELESCOPE/WIDE FIELD CAMERA 3 , 2016, 1611.09272.

[59]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[60]  T. Komacek,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: DAYSIDE–NIGHTSIDE TEMPERATURE DIFFERENCES , 2016, 1601.00069.

[61]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[62]  A. Krone-Martins,et al.  Kinematic analysis and membership status of TWA22 AB , 2009, 0906.4100.

[63]  Nikole K. Lewis,et al.  DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS , 2011, 1207.5639.

[64]  Drake Deming,et al.  REPEATABILITY AND ACCURACY OF EXOPLANET ECLIPSE DEPTHS MEASURED WITH POST-CRYOGENIC SPITZER , 2016, 1601.05101.

[65]  Christopher J. Campo,et al.  TWO NEARBY SUB-EARTH-SIZED EXOPLANET CANDIDATES IN THE GJ 436 SYSTEM , 2012, 1207.4245.

[66]  R. G. West,et al.  WASP-103 b: a new planet at the edge of tidal disruption , 2014, 1401.2784.

[67]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[68]  Joshua N. Winn,et al.  PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES , 2009, 0909.0747.

[69]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[70]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[71]  Serendipitous discovery of seven new southern L-dwarfs , 2003, astro-ph/0302344.

[72]  Kristen Menou,et al.  MAGNETIC DRAG ON HOT JUPITER ATMOSPHERIC WINDS , 2010, 1003.3838.

[73]  W. C. Bowman,et al.  THERMAL EMISSION OF WASP-14b REVEALED WITH THREE SPITZER ECLIPSES , 2011, 1111.2363.

[74]  W. C. Bowman,et al.  Least Asymmetry Centering Method and Comparisons , 2014 .

[75]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur and Phosphorus , 2005, astro-ph/0511136.

[76]  Jacob L. Bean,et al.  SPITZER PHASE CURVE CONSTRAINTS FOR WASP-43b AT 3.6 AND 4.5 μm , 2016, 1608.00056.

[77]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[78]  J. Leconte,et al.  Distorted, nonspherical transiting planets: impact on the transit depth and on the radius determination , 2011, 1101.2813.

[80]  Chris Hill,et al.  Implementation of an Atmosphere-Ocean General Circulation Model on the Expanded Spherical Cube , 2004 .

[81]  Jonathan Fortney,et al.  Metal Enrichment Leads to Low Atmospheric C/O Ratios in Transiting Giant Exoplanets , 2016, 1611.08616.

[82]  J. Bochanski,et al.  THE BROWN DWARF KINEMATICS PROJECT. II. DETAILS ON NINE WIDE COMMON PROPER MOTION VERY LOW MASS COMPANIONS TO NEARBY STARS, , 2009, 0911.1363.

[83]  T. Komacek,et al.  Atmospheric Circulation of Hot Jupiters: Dayside–Nightside Temperature Differences. II. Comparison with Observations , 2016, 1610.03893.

[84]  Nikku Madhusudhan,et al.  NO THERMAL INVERSION AND A SOLAR WATER ABUNDANCE FOR THE HOT JUPITER HD 209458B FROM HST/WFC3 SPECTROSCOPY , 2016, 1605.08810.

[85]  Drake Deming,et al.  The hottest planet , 2007, Nature.

[86]  J. Winters,et al.  THE SOLAR NEIGHBORHOOD. XXXII. THE HYDROGEN BURNING LIMIT, , 2013, 1312.1736.

[87]  W. C. Bowman,et al.  SPITZER SECONDARY ECLIPSES OF WASP-18b , 2010, 1005.1017.

[88]  Laird M. Close,et al.  THE GEMINI NICI PLANET-FINDING CAMPAIGN: DISCOVERY OF A SUBSTELLAR L DWARF COMPANION TO THE NEARBY YOUNG M DWARF CD−35 2722 , 2011, 1101.2893.

[89]  Jacob L. Bean,et al.  NEW ANALYSIS INDICATES NO THERMAL INVERSION IN THE ATMOSPHERE OF HD 209458b , 2014, 1409.5336.

[90]  Vivien Parmentier,et al.  Exoplanet phase curves: observations and theory , 2017 .

[91]  Thomas J. Loredo,et al.  TRANSIT AND ECLIPSE ANALYSES OF THE EXOPLANET HD 149026b USING BLISS MAPPING , 2011, 1108.2057.

[92]  Adam L. Kraus,et al.  A PAN-STARRS + UKIDSS SEARCH FOR YOUNG, WIDE PLANETARY-MASS COMPANIONS IN UPPER SCORPIUS , 2013, 1307.0506.

[93]  A. Loeb,et al.  Periodic Flux Variability of Stars due to the Reflex Doppler Effect Induced by Planetary Companions , 2003, astro-ph/0303212.

[94]  Drake Deming,et al.  Evidence for a Dayside Thermal Inversion and High Metallicity for the Hot Jupiter WASP-18b , 2017, 1711.10491.

[95]  David J Armstrong,et al.  Variability in the atmosphere of the hot giant planet HAT-P-7 b , 2016, Nature Astronomy.

[96]  M. Marley,et al.  GASEOUS MEAN OPACITIES FOR GIANT PLANET AND ULTRACOOL DWARF ATMOSPHERES OVER A RANGE OF METALLICITIES AND TEMPERATURES , 2014, 1409.0026.

[97]  S. Seager,et al.  A SEMI-ANALYTICAL MODEL OF VISIBLE-WAVELENGTH PHASE CURVES OF EXOPLANETS AND APPLICATIONS TO KEPLER- 7 B AND KEPLER- 10 B , 2015, 1501.03876.

[98]  Department of Physics,et al.  Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD 189733b , 2012, 1202.3829.

[99]  Vivien Parmentier,et al.  Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b , 2014, 1403.0121.

[100]  P. Rojo,et al.  A library of near-infrared integral field spectra of young M–L dwarfs , 2013, 1306.3709.

[101]  Robert T. Zellem,et al.  Forecasting the Impact of Stellar Activity on Transiting Exoplanet Spectra , 2017, 1705.04708.

[102]  Gaia Collaboration,et al.  The Gaia mission , 2016, 1609.04153.

[103]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[104]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[105]  Adric R. Riedel,et al.  POPULATION PROPERTIES OF BROWN DWARF ANALOGS TO EXOPLANETS , 2016, 1605.07927.

[106]  D. Crisp,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. I. A COMPARISON OF ATMOSPHERIC RETRIEVAL TECHNIQUES , 2013, 1304.5561.

[107]  J. Tennyson,et al.  Water in exoplanets , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[108]  Avi Shporer,et al.  Evidence for Atmospheric Cold-trap Processes in the Noninverted Emission Spectrum of Kepler-13Ab Using HST/WFC3 , 2016, 1612.06409.

[109]  A. Showman,et al.  Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets , 2014, 1607.04260.

[110]  A. Cameron,et al.  SPITZER OBSERVATIONS OF THE THERMAL EMISSION FROM WASP-43b , 2013, 1302.7003.

[111]  J. Leconte,et al.  Distorted, non-spherical transiting planets: impact on the transit depth and on the radius determination (Corrigendum) , 2011 .

[112]  Jacob L. Bean,et al.  From thermal dissociation to condensation in the atmospheres of ultra hot Jupiters: WASP-121b in context , 2018, Astronomy & Astrophysics.

[113]  M. Shara,et al.  THE BROWN DWARF KINEMATICS PROJECT (BDKP). III. PARALLAXES FOR 70 ULTRACOOL DWARFS , 2012, 1203.5543.

[114]  T. Komacek,et al.  MAGNETIC EFFECTS IN HOT JUPITER ATMOSPHERES , 2014, 1409.0519.

[115]  T. Rogers,et al.  Constraints on the magnetic field strength of HAT-P-7 b and other hot giant exoplanets , 2017, Nature Astronomy.

[116]  I. Neill Reid,et al.  Near-Infrared Spectral Classification of Late M and L Dwarfs , 2000, astro-ph/0012275.

[117]  James Liebert,et al.  Meeting the Cool Neighbors. IX. The Luminosity Function of M7-L8 Ultracool Dwarfs in the Field , 2006, astro-ph/0609648.