Frequency identification of nonparametric Wiener systems containing backlash nonlinearities

This paper addresses the problem of identifying Wiener systems constituted of nonparametric linear dynamics and backlash nonlinearities. The linear subsystem is arbitrary but stable. The backlash nonlinearity borders are almost arbitrary-shape. In particular, these are allowed to be nonsmooth, noninvertible and crossing. A frequency identification method is developed to estimate the system frequency response function (at a given set of frequencies) and the backlash nonlinearity borders (within a given working domain). The identification method involves sine excitations and consistent estimators designed using analytic geometry tools, e.g. fictive limit cycles; informative backlash limit cycles; spread- and orientation-compatibility.

[1]  Jozef Vörös,et al.  Compound Operator Decomposition and Its Application to Hammerstein and Wiener Systems , 2010 .

[2]  Johan Schoukens,et al.  Computing an initial estimate of a Wiener-Hammerstein system with a random phase multisine excitation , 2005, IEEE Transactions on Instrumentation and Measurement.

[3]  Xiao-Li Hu,et al.  Strong consistence of recursive identification for Wiener systems , 2005, Autom..

[4]  Rik Pintelon,et al.  Blind Maximum-likelihood Identification of Wiener and Hammerstein Nonlinear Block Structures , 2010 .

[5]  L. Ljung,et al.  Maximum Likelihood Identification of Wiener Models , 2008 .

[6]  Zygmunt Hasiewicz,et al.  Hammerstein system identification by non-parametric instrumental variables , 2009, Int. J. Control.

[7]  Fouad Giri,et al.  An Analytic Geometry Approach to Wiener System Frequency Identification , 2009, IEEE Transactions on Automatic Control.

[8]  Fouad Giri,et al.  Frequency identification of Wiener systems with backlash nonlinearity , 2010 .

[9]  W. Greblicki,et al.  Nonparametric system identification , 2008 .

[10]  Yonghong Tan,et al.  Recursive identification algorithm for dynamic systems with output backlash and its convergence , 2009, Int. J. Appl. Math. Comput. Sci..

[11]  Martin Enqvist Identification of Block-oriented Systems Using the Invariance Property , 2010 .

[12]  Er-Wei Bai,et al.  Towards identification of Wiener systems with the least amount of a priori information: IIR cases , 2009, Autom..

[13]  Sirish L. Shah,et al.  Modelling valve stiction , 2005 .

[14]  Er-Wei Bai A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[15]  Er-Wei Bai Frequency domain identification of Wiener models , 2003, Autom..

[16]  Kristiaan Pelckmans,et al.  MINLIP for the identification of monotone Wiener systems , 2010, Autom..

[17]  Dario Piga,et al.  Parameter bounds evaluation for linear system with output backlash , 2009 .