Local linear regression for functional data
暂无分享,去创建一个
[1] T. Tony Cai,et al. Prediction in functional linear regression , 2006 .
[2] P. Vieu,et al. NONPARAMETRIC REGRESSION ON FUNCTIONAL DATA: INFERENCE AND PRACTICAL ASPECTS , 2007 .
[3] Ofer Zeitouni,et al. The Probability of Small Gaussian Ellipsoids and Associated Conditional Moments , 1993 .
[4] James O. Ramsay,et al. Applied Functional Data Analysis: Methods and Case Studies , 2002 .
[5] D. Bosq. Linear Processes in Function Spaces: Theory And Applications , 2000 .
[6] Frédéric Ferraty,et al. Functional nonparametric statistics: a double infinite dimensional framework , 2003 .
[7] M. Talagrand,et al. Probability in Banach spaces , 1991 .
[8] C. W. Groetsch,et al. Inverse Problems in the Mathematical Sciences , 1993 .
[9] Jianqing Fan. Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .
[10] Kani Chen. Linear minimax efficiency of local polynomial regression smoothers , 2003 .
[11] P. Sarda,et al. CLT in functional linear regression models , 2005, math/0508073.
[12] Convergence rates for pointwise curve estimation with a degenerate design , 2004, math/0410354.
[13] A. Berlinet,et al. Reproducing kernel Hilbert spaces in probability and statistics , 2004 .
[14] J. Dauxois,et al. Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .
[15] Baver Okutmustur. Reproducing kernel Hilbert spaces , 2005 .
[16] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[17] F. Smithies. Linear Operators , 2019, Nature.
[18] Frédéric Ferraty,et al. Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .
[19] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[20] THE PROBABILITY OF SMALL GAUSSIAN ELLIPSOIDS ANDASSOCIATED CONDITIONAL MOMENTSEddy , 1991 .
[21] Jianqing Fan,et al. Variable Bandwidth and Local Linear Regression Smoothers , 1992 .
[22] E. Masry. Nonparametric regression estimation for dependent functional data: asymptotic normality , 2005 .
[23] Denis Bosq,et al. Linear Processes in Function Spaces , 2000 .
[24] Werner Linde,et al. Approximation, metric entropy and small ball estimates for Gaussian measures , 1999 .
[25] J. Kuelbs,et al. The Gaussian measure of shifted balls , 1994 .
[26] André Mas. Weak convergence in the functional autoregressive model , 2005, math/0509256.
[27] Jane-ling Wang,et al. Functional linear regression analysis for longitudinal data , 2005, math/0603132.
[28] P. Sarda,et al. Smoothing splines estimators for functional linear regression , 2009, 0902.4344.
[29] Jacob T. Schwartz,et al. Linear operators. Part II. Spectral theory , 2003 .
[30] J. Weidmann. Linear Operators in Hilbert Spaces , 1980 .
[31] T. W. Anderson. ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS , 1963 .
[32] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .
[33] Wenbo V. Li,et al. SMALL BALL PROBLEMS FOR NON-CENTERED GAUSSIAN MEASURES , 2008 .
[34] L. Haan. Equivalence classes of regularly varying functions , 1974 .
[35] Amir Dembo,et al. Exact behavior of Gaussian seminorms , 1995 .
[36] M. A. Kaashoek,et al. Classes of Linear Operators Vol. I , 1990 .
[37] I. M. Glazman,et al. Theory of linear operators in Hilbert space , 1961 .
[38] Philippe Vieu,et al. Advances on nonparametric regression for functional variables , 2006, math/0603084.
[39] H. Muller,et al. Generalized functional linear models , 2005, math/0505638.
[40] M. Kenward,et al. A COMPARISON OF MIXED MODEL SPLINES FOR CURVE FITTING , 2007 .
[41] L. Haan. A form of regular variation and its application to the domain of attraction of the double exponential distribution , 1971 .
[42] Local Functional Principal Component Analysis , 2007, math/0702609.
[43] A. Kneip,et al. Functional Data Analysis and Mixed Effect Models , 2004 .
[44] Q. Shao,et al. Gaussian processes: Inequalities, small ball probabilities and applications , 2001 .
[45] E. Nadaraya. On Estimating Regression , 1964 .