Local linear regression for functional data

We study a non-linear regression model with functional data as inputs and scalar response. We propose a pointwise estimate of the regression function that maps a Hilbert space onto the real line by a local linear method and derive its asymptotic mean square error. Computations involve a linear inverse problem as well as a representation of the small ball probability of the data and are based on recent advances in this area.

[1]  T. Tony Cai,et al.  Prediction in functional linear regression , 2006 .

[2]  P. Vieu,et al.  NONPARAMETRIC REGRESSION ON FUNCTIONAL DATA: INFERENCE AND PRACTICAL ASPECTS , 2007 .

[3]  Ofer Zeitouni,et al.  The Probability of Small Gaussian Ellipsoids and Associated Conditional Moments , 1993 .

[4]  James O. Ramsay,et al.  Applied Functional Data Analysis: Methods and Case Studies , 2002 .

[5]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[6]  Frédéric Ferraty,et al.  Functional nonparametric statistics: a double infinite dimensional framework , 2003 .

[7]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[8]  C. W. Groetsch,et al.  Inverse Problems in the Mathematical Sciences , 1993 .

[9]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[10]  Kani Chen Linear minimax efficiency of local polynomial regression smoothers , 2003 .

[11]  P. Sarda,et al.  CLT in functional linear regression models , 2005, math/0508073.

[12]  Convergence rates for pointwise curve estimation with a degenerate design , 2004, math/0410354.

[13]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[14]  J. Dauxois,et al.  Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .

[15]  Baver Okutmustur Reproducing kernel Hilbert spaces , 2005 .

[16]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[17]  F. Smithies Linear Operators , 2019, Nature.

[18]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[19]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[20]  THE PROBABILITY OF SMALL GAUSSIAN ELLIPSOIDS ANDASSOCIATED CONDITIONAL MOMENTSEddy , 1991 .

[21]  Jianqing Fan,et al.  Variable Bandwidth and Local Linear Regression Smoothers , 1992 .

[22]  E. Masry Nonparametric regression estimation for dependent functional data: asymptotic normality , 2005 .

[23]  Denis Bosq,et al.  Linear Processes in Function Spaces , 2000 .

[24]  Werner Linde,et al.  Approximation, metric entropy and small ball estimates for Gaussian measures , 1999 .

[25]  J. Kuelbs,et al.  The Gaussian measure of shifted balls , 1994 .

[26]  André Mas Weak convergence in the functional autoregressive model , 2005, math/0509256.

[27]  Jane-ling Wang,et al.  Functional linear regression analysis for longitudinal data , 2005, math/0603132.

[28]  P. Sarda,et al.  Smoothing splines estimators for functional linear regression , 2009, 0902.4344.

[29]  Jacob T. Schwartz,et al.  Linear operators. Part II. Spectral theory , 2003 .

[30]  J. Weidmann Linear Operators in Hilbert Spaces , 1980 .

[31]  T. W. Anderson ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS , 1963 .

[32]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[33]  Wenbo V. Li,et al.  SMALL BALL PROBLEMS FOR NON-CENTERED GAUSSIAN MEASURES , 2008 .

[34]  L. Haan Equivalence classes of regularly varying functions , 1974 .

[35]  Amir Dembo,et al.  Exact behavior of Gaussian seminorms , 1995 .

[36]  M. A. Kaashoek,et al.  Classes of Linear Operators Vol. I , 1990 .

[37]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[38]  Philippe Vieu,et al.  Advances on nonparametric regression for functional variables , 2006, math/0603084.

[39]  H. Muller,et al.  Generalized functional linear models , 2005, math/0505638.

[40]  M. Kenward,et al.  A COMPARISON OF MIXED MODEL SPLINES FOR CURVE FITTING , 2007 .

[41]  L. Haan A form of regular variation and its application to the domain of attraction of the double exponential distribution , 1971 .

[42]  Local Functional Principal Component Analysis , 2007, math/0702609.

[43]  A. Kneip,et al.  Functional Data Analysis and Mixed Effect Models , 2004 .

[44]  Q. Shao,et al.  Gaussian processes: Inequalities, small ball probabilities and applications , 2001 .

[45]  E. Nadaraya On Estimating Regression , 1964 .