Silicon thin film solar cells on commercial tiles

Nanostructured silicon single junction thin film solar cells were deposited on commercial red clay roof tiles with engobe surfaces and earthenware wall tiles with glazed surfaces, with a test area of 24 mm2. We studied the influence of the type of substrate tile, back contact, buffer layer and SiOx passivation layer on the optoelectronic performance of the solar cells. Despite the fact that typical micrometre-sized defects on the surfaces of the tiles and the porous nature of the ceramic substrates make deposition of homogeneous thin films on them quite challenging, we have been able to achieve a cell efficiency of 5% and a quantum efficiency of 80% on non-fully optimized cells on commercial tiles. The method is industrially employable utilizing pre-existing plasma-enhanced chemical vapour deposition technologies. The cost-effectiveness and industrial feasibility of the technique are discussed. Our study shows that photovoltaic tiles can combine energy generation with architectural aesthetics leading to significant implications for advancement in building integrated photovoltaics.

[1]  Srinivas Sista,et al.  Tandem polymer photovoltaic cells—current status, challenges and future outlook , 2011 .

[2]  E. Centurioni,et al.  Thin-film solar cells on commercial ceramic tiles , 2009 .

[3]  P. Cabarrocas,et al.  Experimental evidence for nanoparticle deposition in continuous argon–silane plasmas: Effects of silicon nanoparticles on film properties , 1996 .

[4]  R. P. Gupta,et al.  Atomic force microscopy of selenium sulfide passivated GaAs (100) surface , 1996 .

[5]  Giuseppe Gigli,et al.  Highly efficient smart photovoltachromic devices with tailored electrolyte composition , 2011 .

[6]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[7]  M. Zeman,et al.  Modeling and optimization of white paint back reflectors for thin-film silicon solar cells , 2010 .

[8]  Stephen R. Forrest,et al.  Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer , 2004 .

[9]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[10]  K. Sun,et al.  Nanostructure in the p-layer and its impacts on amorphous silicon solar cells , 2006 .

[11]  E. Fortunato,et al.  Role of trimethylboron to silane ratio on the properties of p-type nanocrystalline silicon thin film deposited by radio frequency plasma enhanced chemical vapour deposition. , 2010, Journal of nanoscience and nanotechnology.

[12]  Frederik C. Krebs,et al.  Life-cycle analysis of product integrated polymer solar cells , 2011 .

[13]  E. A. Alsema,et al.  Life‐cycle greenhouse gas effects of introducing nano‐crystalline materials in thin‐film silicon solar cells , 2011 .

[14]  A. Slaoui,et al.  Thin-film silicon solar cells on mullite substrates , 2006 .

[15]  Enric Bertran,et al.  Deposition of Nanostructured Silicon Thin Films by Means of the Selective Contribution of Particles in Pecvd , 1998 .

[16]  B. Rech,et al.  Flexible amorphous and microcrystalline silicon tandem solar modules in the temporary superstrate concept , 2007 .

[17]  Pedro Barquinha,et al.  Electron transport and optical characteristics in amorphous indium zinc oxide films , 2006 .

[18]  C. Clerc,et al.  Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements , 2004 .

[19]  Bernd Stannowski,et al.  Helianthos : Roll-to-Roll deposition of flexible solar cell modules , 2007 .

[20]  E. Fortunato,et al.  Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz , 2005 .

[21]  T. Razykov,et al.  Solar photovoltaic electricity: Current status and future prospects , 2011 .

[22]  Qiquan Qiao,et al.  A review of polymer multijunction solar cells , 2010 .

[23]  E. Fortunato,et al.  Nanostructured silicon and its application to solar cells, position sensors and thin film transistors , 2009 .

[24]  Yun Luo,et al.  The lamination of (multi)crystalline and thin film based photovoltaic modules , 2011 .

[25]  Monica Lira-Cantu,et al.  Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells , 2011 .

[26]  E. Fortunato,et al.  Highly conductive p-type nanocrystalline silicon films deposited by RF-PECVD using silane and trimethylboron mixtures at high pressure , 2009 .

[27]  E. Fortunato,et al.  High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature , 2006 .

[28]  E. Fortunato,et al.  Engineering of a-Si:H device stability by suitable design of interfaces , 2002 .

[29]  Alessandro Fantoni,et al.  Influence of the intrinsic layer characteristics on a-Si:H p–i–n solar cell performance analysed by means of a computer simulation , 2002 .

[30]  Frederik C. Krebs,et al.  The OE-A OPV demonstrator anno domini 2011 , 2011 .

[31]  E. Fortunato,et al.  Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications , 2008 .

[32]  D. Bhusari,et al.  p-doped μc-Si:H window layers prepared by hot-wire CVD for amorphous solar cell application , 2006 .

[33]  E. Waclawik,et al.  Grafting silica species on anatase surface for visible light photocatalytic activity , 2011 .

[34]  P. Cabarrocas,et al.  Over-coordination and order in hydrogenated nanostructured silicon thin films: their influence on strain and electronic properties , 2005 .

[35]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[36]  D. W. Sheel,et al.  Optical properties of SnO2:F films deposited by atmospheric pressure CVD , 2009 .

[37]  Erin Baker,et al.  Estimating the manufacturing cost of purely organic solar cells , 2009 .

[38]  Polymorphous silicon deposited in large area reactor at 13 and 27 MHz , 2003 .

[39]  Martin A. Green,et al.  Solar cell efficiency tables (version 37) , 2011 .

[40]  E. Fortunato,et al.  Substrate effect on the electrical properties of a‐Si:H thin films and its modification by diffusion‐blocking interlayers , 1989 .

[41]  Leandro Raniero,et al.  Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings , 2006 .

[42]  Milan Vanecek,et al.  Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD , 2009 .

[43]  G. Beaucarne,et al.  Thin-film polycrystalline silicon solar cells on ceramic substrates with a Voc above 500 mV , 2006 .

[44]  Elvira Fortunato,et al.  Large Area Deposition of Polymorphous Silicon by Plasma Enhanced Chemical Vapor Deposition at 27.12 MHz and 13.56 MHz , 2003 .

[45]  R. M. Lambert,et al.  A versatile new method for synthesis and deposition of doped, visible light-activated TiO2 thin films , 2009 .

[46]  Growth of Polymorphous/Nanocrystalline Silicon Films Deposited by PECVD at 13.56 MHz , 2004 .

[47]  Nathan S. Lewis,et al.  High-performance Si microwire photovoltaics , 2011 .

[48]  R. Martins,et al.  A thin SiO layer as a remedy for the indium reduction at the In2O3/μc-Si:C:H interface , 1991 .