Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries

One of the greatest challenges for our society is to provide powerful electrochemical energy conversion and storage devices. Electrochemical capacitors and lithium-ion batteries are among the most promising candidates in terms of power- and energy-densities. The choice of electrode material is key to improving the performance of these energy conversion devices. Carbon nanotube arrays (CNTAs) and their composites show good capacity, excellent rate performance, and long cycle life when used as electrode materials because they present superior electronic conductivity, high surface area, developed porous structure, and robust properties. This review deals with recent progress in the fabrication, microstructure, and energy storage performance of different CNTA electrodes and their composites in electrochemical capacitors and lithium-ion batteries. In particular, representative examples of our CNTA-based electrodes are highlighted.

[1]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[2]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[3]  Hao Zhang,et al.  Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes , 2009 .

[4]  Monica Lira-Cantu,et al.  Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review , 2009 .

[5]  Jeff Tollefson,et al.  Car industry: Charging up the future , 2008, Nature.

[6]  K. Lian,et al.  Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique , 2008 .

[7]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[8]  T. Seong,et al.  Co(OH)2-combined carbon-nanotube array electrodes for high-performance micro-electrochemical capacitors , 2008 .

[9]  Zhennan Gu,et al.  Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. , 2008, Nano letters.

[10]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[11]  Hao Zhang,et al.  Influence of Ethylene and Hydrogen Flow Rates on the Wall Number, Crystallinity, and Length of Millimeter-Long Carbon Nanotube Array , 2008 .

[12]  Hao Zhang,et al.  Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability , 2008 .

[13]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[14]  Zhennan Gu,et al.  Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors , 2008 .

[15]  S. Cho,et al.  Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. , 2008, Accounts of chemical research.

[16]  Hao Zhang,et al.  Electrochemical capacitive properties of carbon nanotube arrays directly grown on glassy carbon and tantalum foils , 2008 .

[17]  H. Kawarada,et al.  Highly selective growth of vertically aligned double‐walled carbon nanotubes by a controlled heating method and their electric double‐layer capacitor properties , 2008 .

[18]  Hao Zhang,et al.  Influence of Hydrogen Pretreatment Condition on the Morphology of Fe/Al2O3 Catalyst Film and Growth of Millimeter-Long Carbon Nanotube Array , 2008 .

[19]  K. Ozoemena,et al.  Self-assembled nano-arrays of single-walled carbon nanotube–octa(hydroxyethylthio)phthalocyaninatoiron(II) on gold surfaces: Impacts of SWCNT and solution pH on electron transfer kinetics , 2008 .

[20]  Ran Liu,et al.  MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. , 2008, Journal of the American Chemical Society.

[21]  M. Armand,et al.  Building better batteries , 2008, Nature.

[22]  Hao Zhang,et al.  Comparison Between Electrochemical Properties of Aligned Carbon Nanotube Array and Entangled Carbon Nanotube Electrodes , 2008 .

[23]  Huaihe Song,et al.  A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries , 2008 .

[24]  Zhennan Gu,et al.  Capacitive performance of an ultralong aligned carbon nanotube electrode in an ionic liquid at 60 °C , 2008 .

[25]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.

[26]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[27]  Yongyao Xia,et al.  Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor , 2007 .

[28]  R. Kaltofen,et al.  Influence of the Catalyst Hydrogen Pretreatment on the Growth of Vertically Aligned Nitrogen-Doped Carbon Nanotubes , 2007 .

[29]  Wei Liu,et al.  Low-temperature preparation and electrochemical capacitance of WC/carbon composites with high specific surface area , 2007 .

[30]  E. Lust,et al.  Synthesis and characterisation of nanoporous carbide-derived carbon by chlorination of vanadium carbide , 2007 .

[31]  Yoshitaka Murakami,et al.  Remarkable CO-catalyst effect of gold nanoclusters on olefin oxidation catalyzed by a manganese-porphyrin complex. , 2007, Journal of the American Chemical Society.

[32]  J. Choy,et al.  Non‐Hydrothermal Synthesis of 1D Nanostructured Manganese‐Based Oxides: Effect of Cation Substitution on the Electrochemical Performance of Nanowires , 2007 .

[33]  Hao Zhang,et al.  Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte , 2007 .

[34]  Ki Chul Park,et al.  Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors , 2007 .

[35]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[36]  M. Rincón,et al.  Electrochemical supercapacitors based on novel hybrid materials made of carbon nanotubes and polyoxometalates , 2007 .

[37]  Y. Oaki,et al.  One-pot synthesis of manganese oxide nanosheets in aqueous solution: chelation-mediated parallel control of reaction and morphology. , 2007, Angewandte Chemie.

[38]  Jun Chen,et al.  Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery , 2007 .

[39]  J. Shapter,et al.  Electron-transfer characteristics of ferrocene attached to single-walled carbon nanotubes (SWCNT) arrays directly anchored to silicon(1 0 0) , 2007 .

[40]  Robert Vajtai,et al.  Vertically Aligned Large-Diameter Double-Walled Carbon Nanotube Arrays Having Ultralow Density , 2007 .

[41]  K. Ooi,et al.  Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides , 2007 .

[42]  G. Cao,et al.  Using a cut–paste method to prepare a carbon nanotube fur electrode , 2007 .

[43]  E. Lust,et al.  Characterisation of activated nanoporous carbon for supercapacitor electrode materials , 2007 .

[44]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[45]  M. Ishikawa,et al.  Aligned MWCNT Sheet Electrodes Prepared by Transfer Methodology Providing High-Power Capacitor Performance , 2007 .

[46]  A. Chiodoni,et al.  Macroscopic growth of carbon nanotube mats and their mechanical properties , 2007 .

[47]  Christopher S. Johnson Development and utility of manganese oxides as cathodes in lithium batteries , 2007 .

[48]  H. Konno,et al.  Hydrated Mn(IV) oxide-exfoliated graphite composites for electrochemical capacitor , 2007 .

[49]  Dong‐Won Kim,et al.  Polyaniline/Carbon Nanotube Composite Cathode for Rechargeable Lithium Polymer Batteries Assembled with Gel Polymer Electrolyte , 2007 .

[50]  C. Sow,et al.  Tailoring wettability change on aligned and patterned carbon nanotube films for selective assembly. , 2007, Journal of Physical Chemistry B.

[51]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[52]  Cheol-Min Yang,et al.  Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. , 2007, Journal of the American Chemical Society.

[53]  Mathieu Toupin,et al.  Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors , 2006 .

[54]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[55]  S. Senz,et al.  Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.

[56]  N. Wu,et al.  Electrochemical characterization on MnFe2O4/carbon black composite aqueous supercapacitors , 2006 .

[57]  Surjya K. Pal,et al.  Direct growth of aligned carbon nanotubes on bulk metals , 2006, Nature nanotechnology.

[58]  P. Bonelli,et al.  Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays , 2006 .

[59]  Omkaram Nalamasu,et al.  Contact transfer of aligned carbon nanotube arrays onto conducting substrates , 2006 .

[60]  H.Q. Li,et al.  Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance , 2006 .

[61]  K. Hata,et al.  Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. , 2006, Journal of the American Chemical Society.

[62]  Gaoping Cao,et al.  Characterization of sol–gel-derived NiOx xerogels as supercapacitors , 2006 .

[63]  Yu‐Guo Guo,et al.  Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity , 2006, Nature materials.

[64]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[65]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[66]  H. Kwon,et al.  Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition , 2006 .

[67]  Li-Zhen Fan,et al.  High-performance polypyrrole electrode materials for redox supercapacitors , 2006 .

[68]  Xiaohong Wang,et al.  Polymer-functionalized multiwalled carbon nanotubes as lithium intercalation hosts. , 2006, The journal of physical chemistry. B.

[69]  Detachment of vertically aligned single-walled carbon nanotube films from substrates and their re-attachment to arbitrary surfaces , 2006 .

[70]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[71]  B. Wei,et al.  Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials , 2006 .

[72]  I. Zhitomirsky,et al.  Cathodic electrodeposition of MnOx films for electrochemical supercapacitors , 2006 .

[73]  Z. Ren,et al.  Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia , 2006 .

[74]  Takuzo Aida,et al.  Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids. , 2006, Small.

[75]  R. M. Tromp,et al.  The influence of the surface migration of gold on the growth of silicon nanowires , 2006, Nature.

[76]  F. Béguin,et al.  Supercapacitors based on conducting polymers/nanotubes composites , 2006 .

[77]  M. Prato,et al.  Chemistry of carbon nanotubes. , 2006, Chemical reviews.

[78]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[79]  W. Knoll,et al.  Synthesis of dumbbell-shaped manganese oxide nanocrystals. , 2006, The journal of physical chemistry. B.

[80]  E. Toberer,et al.  Macroporous manganese oxides with regenerative mesopores. , 2006, Journal of the American Chemical Society.

[81]  Lingbo Zhu,et al.  Well-aligned open-ended carbon nanotube architectures: an approach for device assembly. , 2006, Nano letters.

[82]  Jun Chen,et al.  High‐Power Alkaline Zn–MnO2 Batteries Using γ‐MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder , 2005 .

[83]  Mao-Sung Wu,et al.  Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. , 2005, The journal of physical chemistry. B.

[84]  H. Dai,et al.  Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[85]  P. Ajayan,et al.  Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. , 2005, The journal of physical chemistry. B.

[86]  Vinay Gupta,et al.  Large-area network of polyaniline nanowires prepared by potentiostatic deposition process , 2005 .

[87]  H. Kawarada,et al.  Direct evidence for root growth of vertically aligned single-walled carbon nanotubes by microwave plasma chemical vapor deposition. , 2005, The journal of physical chemistry. B.

[88]  S. Suib,et al.  Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures. , 2005, Journal of the American Chemical Society.

[89]  M. Brett,et al.  Variations in MnO2 electrodeposition for electrochemical capacitors , 2005 .

[90]  J. Do,et al.  Using PANI–PPDA/Au composite films as cathode of lithium secondary battery , 2005 .

[91]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[92]  T. Lim,et al.  Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. , 2005, Small.

[93]  François Béguin,et al.  Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations , 2005 .

[94]  Jun Cai,et al.  Control of Nanometer‐Scale Tunnel Sizes of Porous Manganese Oxide Octahedral Molecular Sieve Nanomaterials , 2005 .

[95]  I. Honma,et al.  Synthesis of MnO2 Nanoparticles Confined in Ordered Mesoporous Carbon Using a Sonochemical Method , 2005 .

[96]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[97]  P. Balaya,et al.  Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides , 2004 .

[98]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[99]  J. Gaurav,et al.  Amorphous manganese oxide remains amorphous upon lithium intercalation and cycling , 2004 .

[100]  Kun-Hong Lee,et al.  Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes , 2004 .

[101]  N. Myung,et al.  Electrodeposited amorphous manganese oxide nanowire arrays for high energy and power density electrodes , 2004 .

[102]  Richard B Kaner,et al.  A general chemical route to polyaniline nanofibers. , 2004, Journal of the American Chemical Society.

[103]  Lei Jiang,et al.  Oriented Growth of Self‐Assembled Polyaniline Nanowire Arrays Using a Novel Method , 2003 .

[104]  M. Yin,et al.  Synthesis of monodisperse nanocrystals of manganese oxides. , 2003, Journal of the American Chemical Society.

[105]  Jeffrey W. Long,et al.  Ultrathin, protective coatings of poly(o-phenylenediamine) as electrochemical proton gates: Making mesoporous MnO2 nanoarchitectures stable in acid electrolytes , 2003 .

[106]  Debra R Rolison,et al.  Catalytic Nanoarchitectures--the Importance of Nothing and the Unimportance of Periodicity , 2003, Science.

[107]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[108]  Jingsi Yang,et al.  Nanostructured amorphous manganese oxide cryogel as a high-rate lithium intercalation host , 2003 .

[109]  Liang Liang,et al.  Direct assembly of large arrays of oriented conducting polymer nanowires. , 2002, Angewandte Chemie.

[110]  Chi-Chang Hu,et al.  Effects of the loading and polymerization temperature on the capacitive performance of polyaniline in NaNO3 , 2002 .

[111]  Zhixiang Wei,et al.  Hollow Microspheres of Polyaniline Synthesized with an Aniline Emulsion Template , 2002 .

[112]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[113]  Junhua Jiang,et al.  Electrochemical supercapacitor material based on manganese oxide: preparation and characterization , 2002 .

[114]  Nae-Lih Wu,et al.  Nanocrystalline oxide supercapacitors , 2002 .

[115]  Yong Yang,et al.  Preparation of multi-walled carbon nanotube array electrodes and its electrochemical intercalation behavior of Li ions , 2002 .

[116]  G. Chen,et al.  Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole , 2002 .

[117]  Zhongping Huang,et al.  Electrochemical synthesis of polypyrrole films over each of well-aligned carbon nanotubes , 2001 .

[118]  T. Ishihara,et al.  Effects of synthesis condition of graphitic nanocabon tube on anodic property of Li-ion rechargeable battery , 2001 .

[119]  Hao-qing Wu,et al.  Electrochemical intercalation of lithium into carbon nanotubes , 2001 .

[120]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[121]  Nerilso Bocchi,et al.  Performance of polyaniline electrosynthesized in the presence of trichloroacetic acid as a battery cathode , 2001 .

[122]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[123]  Andrew G. Rinzler,et al.  Solid‐State Electrochemistry of the Li Single Wall Carbon Nanotube System , 2000 .

[124]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[125]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[126]  P. Bernier,et al.  Electrochemical intercalation of lithium into multiwall carbon nanotubes , 1999 .

[127]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[128]  S. Bonnamy,et al.  Electrochemical storage of lithium in multiwalled carbon nanotubes , 1999 .

[129]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[130]  B. Mattes,et al.  Structural Studies of Halogen Acid Doped Polyaniline and the Role of Water Hydration , 1998 .

[131]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[132]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[133]  Arumugam Manthiram,et al.  A manganese oxyiodide cathode for rechargeable lithium batteries , 1997, Nature.

[134]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[135]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[136]  Shimshon Gottesfeld,et al.  Conducting polymers as active materials in electrochemical capacitors , 1994 .

[137]  Alan G. MacDiarmid,et al.  Polyaniline: Electrochemistry and application to rechargeable batteries , 1987 .