A New Strategy in the Complexity Analysis of an Infeasible-Interior-Point Method for Symmetric Cone Programming

In this paper, we give a new strategy in the complexity analysis of an infeasible-interior-point method for symmetric cone programming. Using the strategy, we improve the theoretical complexity bound of an infeasible-interior-point method. Convergence is shown for a commutative class of search directions, which includes the Nesterov–Todd direction and the $$xs$$xs and $$sx$$sx directions.

[1]  Jiming Peng,et al.  Self-regularity - a new paradigm for primal-dual interior-point algorithms , 2002, Princeton series in applied mathematics.

[2]  Shinji Mizuno,et al.  Polynomiality of infeasible-interior-point algorithms for linear programming , 1994, Math. Program..

[3]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[4]  Osman Güler,et al.  Barrier Functions in Interior Point Methods , 1996, Math. Oper. Res..

[5]  Florian A. Potra,et al.  A Superlinearly Convergent Primal-Dual Infeasible-Interior-Point Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..

[6]  Hongwei Liu,et al.  A New Wide Neighborhood Primal–Dual Infeasible-Interior-Point Method for Symmetric Cone Programming , 2013, J. Optim. Theory Appl..

[7]  Jian Zhang,et al.  Polynomial complexity of an interior point algorithm with a second order corrector step for symmetric cone programming , 2011, Math. Methods Oper. Res..

[8]  Bharath Kumar Rangarajan,et al.  Polynomial Convergence of Infeasible-Interior-Point Methods over Symmetric Cones , 2006, SIAM J. Optim..

[9]  Jean-Philippe Vial,et al.  Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.

[10]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[11]  Manuel V. C. Vieira Interior-point methods based on kernel functions for symmetric optimization , 2012, Optim. Methods Softw..

[12]  Yan-Qin Bai,et al.  A New Full Nesterov–Todd Step Primal–Dual Path-Following Interior-Point Algorithm for Symmetric Optimization , 2012, Journal of Optimization Theory and Applications.

[13]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[14]  Hongwei Liu,et al.  Polynomial Convergence of Second-Order Mehrotra-Type Predictor-Corrector Algorithms over Symmetric Cones , 2012, J. Optim. Theory Appl..

[15]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[16]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[17]  Farid Alizadeh,et al.  Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..

[18]  F. Potra,et al.  Superlinear Convergence of Interior-Point Algorithms for Semidefinite Programming , 1998 .

[19]  Naihua Xiu,et al.  Path-following interior point algorithms for the Cartesian P*(κ)-LCP over symmetric cones , 2009 .

[20]  L. Faybusovich Linear systems in Jordan algebras and primal-dual interior-point algorithms , 1997 .

[21]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[22]  Guoyong Gu,et al.  Full Nesterov-Todd step infeasible interior-point method for symmetric optimization , 2011, Eur. J. Oper. Res..

[23]  Irvin Lustig,et al.  Feasibility issues in a primal-dual interior-point method for linear programming , 1990, Math. Program..

[24]  Florian A. Potra,et al.  An Infeasible Interior Point Method for Linear Complementarity Problems over Symmetric Cones , 2009 .