Time-Frequency Analysis of Sjöstrand's Class
暂无分享,去创建一个
[1] Kazuya Tachizawa,et al. The Boundedness of Pseudodifferential Operators on Modulation Spaces , 2006 .
[2] K. Gröchenig,et al. Wiener's lemma for twisted convolution and Gabor frames , 2003 .
[3] R. Beals. Characterization of pseudodifferential operators and applications , 1977 .
[4] A Boulkhemair,et al. L2 Estimates for Weyl Quantization , 1999 .
[5] K. Gröchenig,et al. MODULATION SPACES AND A CLASS OF BOUNDED MULTILINEAR PSEUDODIFFERENTIAL OPERATORS , 2005 .
[6] C. Heil,et al. Singular Values of Compact Pseudodifferential Operators , 1997 .
[7] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[8] Johannes Sj,et al. AN ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS , 1994 .
[9] H. Feichtinger. Modulation Spaces on Locally Compact Abelian Groups , 2003 .
[10] Richard Rochberg,et al. Pseudodifferential operators, Gabor frames, and local trigonometric bases , 1998 .
[11] Remarks on a Wiener type pseudodifferential algebra and Fourier integral operators , 1997 .
[12] Wojciech Czaja,et al. Boundedness of pseudodifferential operators on modulation spaces , 2003 .
[13] Quantification asymptotique et microlocalisations d'ordre supérieur. I , 1987 .
[14] S. Pilipovic,et al. Pseudodifferential operators on ultra-modulation spaces , 2004 .
[15] D. Walnut,et al. Differentiation and the Balian-Low Theorem , 1994 .
[16] D. Walnut. Lattice size estimates for Gabor decompositions , 1993 .
[17] J. Toft. Continuity properties for modulation spaces, with applications to pseudo-differential calculus—I , 2004 .
[18] J. Toft. Positivity properties in noncommutative convoluti algebras with applications in pseudo-differential calculus , 2003 .
[19] Lasse Borup,et al. Pseudodifferential operators on a-modulation spaces , 2004 .
[20] K. Hannabuss,et al. HARMONIC ANALYSIS IN PHASE SPACE: (Annals of Mathematics Studies 122) , 1990 .
[21] W. Czaja,et al. Pseudodifferentia Operators and Gabor Frames: Spectral Asymptotics , 2002 .
[22] G. Björck. Linear partial differential operators and generalized distributions , 1966 .
[23] Karlheinz Gröchenig,et al. Modulation spaces and pseudodifferential operators , 1999 .
[24] I. M. Gelfand,et al. Commutative Normed Rings. , 1967 .
[25] J. Toft,et al. Subalgebras to a Wiener type algebra of pseudo-differential operators , 2006 .
[26] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[27] A. Baskakov,et al. Wiener's theorem and the asymptotic estimates of the elements of inverse matrices , 1990 .
[28] F. Hérau. Melin-Hörmander inequality in a Wiener type pseudo-differential algebra , 2001 .
[29] Karlheinz Gröchenig,et al. Counterexamples for boundedness of pseudodifferential operators , 2004 .
[30] M. Shubin. Pseudodifferential Operators and Spectral Theory , 1987 .
[31] Karlheinz Gröchenig,et al. Composition and spectral invariance of pseudodifferential Operators on Modulation Spaces , 2006 .
[32] J. Sjöstrand,et al. Wiener type algebras of pseudodifferential operators , 1995 .
[33] MODULATION SPACES AS SYMBOL CLASSES FOR PSEUDODIFFERENTIAL OPERATORS , 2002 .
[34] H. Feichtinger. On a new Segal algebra , 1981 .
[35] H. Feichtinger,et al. Gabor Frames and Time-Frequency Analysis of Distributions* , 1997 .
[36] A. Janssen. Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .
[37] Demetrio Labate,et al. Time-Frequency Analysis of Pseudodifferential Operators , 2001 .
[38] K. Gröchenig,et al. Time–Frequency analysis of localization operators , 2003 .
[39] Massimo Fornasier,et al. Intrinsic Localization of Frames , 2005 .