Plasmonic hole arrays with extreme optical chirality in linear and nonlinear regimes
暂无分享,去创建一个
Maxim V. Gorkunov | Vladimir V. Artemov | Alexei V. Kondratov | A. N. Darinskii | O. Y. Rogov | Radmir V. Gainutdinov | V. Artemov | R. Gainutdinov | A. Darinskii | M. Gorkunov | A. V. Kondratov
[1] Joseph Zyss,et al. Octupolar Plasmonic Meta-Molecules for Nonlinear Chiral Watermarking at Subwavelength Scale , 2015 .
[2] Alexander A. Ezhov,et al. Extreme optical chirality of plasmonic nanohole arrays due to chiral Fano resonance , 2016 .
[3] A. Alú,et al. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.
[4] George C. Schatz,et al. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .
[5] Domenico Solimini,et al. Waves and Fields , 2016 .
[6] S. Tretyakov,et al. Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles , 2008, 0811.0084.
[7] Ambarish Ghosh,et al. Wafer scale fabrication of porous three-dimensional plasmonic metamaterials for the visible region: chiral and beyond. , 2013, Nanoscale.
[8] Andreas Tünnermann,et al. Elevating optical activity: Efficient on-edge lithography of three-dimensional starfish metamaterial , 2014 .
[9] O. Y. Rogov,et al. Implications of the causality principle for ultra chiral metamaterials , 2015, Scientific Reports.
[10] O. Y. Rogov,et al. Causality relations for materials with strong artificial optical chirality , 2014, 1408.4977.
[11] H. Haus. Waves and fields in optoelectronics , 1983 .
[12] Konstantins Jefimovs,et al. Giant optical activity in quasi-two-dimensional planar nanostructures. , 2005, Physical review letters.
[13] E. Palik. Handbook of Optical Constants of Solids , 1997 .
[14] O. Y. Rogov,et al. Extreme optical activity and circular dichroism of chiral metal hole arrays , 2014, 1404.7615.
[15] B. Sturman,et al. Selective excitation of plasmons superlocalized at sharp perturbations of metal nanoparticles , 2015, 1505.00945.
[16] W. Barnes. Comparing experiment and theory in plasmonics , 2009 .
[17] Pierre Berini,et al. On the convergence and accuracy of the FDTD method for nanoplasmonics. , 2015, Optics express.
[18] B. Sturman,et al. Plasmonic resonances of nanowires with periodically corrugated cross sections , 2012 .
[19] N. Zheludev,et al. Electromagnetic wave analogue of an electronic diode , 2010, 1010.5830.
[20] R. Magnusson,et al. Analytic Theory of the Resonance Properties of Metallic Nanoslit Arrays , 2012, IEEE Journal of Quantum Electronics.
[21] J. Joannopoulos,et al. Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.
[22] J. Leuthold,et al. Nonlinear silicon photonics , 2010 .
[23] M. Wegener,et al. Twisted split-ring-resonator photonic metamaterial with huge optical activity. , 2010, Optics letters.
[24] P. Fischer,et al. Plasmonic nanohelix metamaterials with tailorable giant circular dichroism , 2013 .
[25] Mikhail Lapine,et al. Spontaneous chiral symmetry breaking in metamaterials , 2014, Nature Communications.
[26] Nikolay I. Zheludev,et al. Extrinsic electromagnetic chirality in metamaterials , 2009 .
[27] Xiang Zhang,et al. Photoinduced handedness switching in terahertz chiral metamolecules , 2012, Nature Communications.
[28] Stefan Linden,et al. Giving light yet another new twist , 2009 .