Nonparametric Item Response Theory in Action: An Overview of the Special Issue

Although most item response theory (IRT) applications and related methodologies involve model fitting within a single parametric IRT (PIRT) family [e.g., the Rasch (1960) model or the threeparameter logistic model ( 3PLM; Lord, 1980)], nonparametric IRT (NIRT) research has been growing in recent years. Three broad motivations for the development and continued interest in NIRT can be identified: 1. To identify a commonality among PIRT and IRT-like models, model features [e.g., local independence (LI), monotonicity of item response functions (IRFs), unidimensionality of the latent variable] should be characterized, and it should be discovered what happens when models satisfy only weakened versions of these features. Characterizing successful and unsuccessful inferences under these broad model features can be attempted in order to understand how IRT models aggregate information from data. All this can be done with NIRT. 2. Any model applied to data is likely to be incorrect. When a family of PIRT models has been shown (or is suspected) to fit poorly, a more flexible family of NIRT models often is desired. These NIRT models have been used to: (1) assess violations of LI due to nuisance traits (e.g., latent variable multidimensionality) or the testing context influencing test performance (e.g., speededness and question wording), (2) clarify questions about the sources and effects of differential item functioning, (3) provide a flexible context in which to develop methodology for establishing the most appropriate number of latent dimensions underlying a test, and (4) serve as alternatives for PIRT models in tests of fit. 3. In psychological and sociological research, when it is necessary to develop a new questionnaire or measurement instrument, there often are fewer examinees and items than are desired for fitting PIRT models in large-scale educational testing. NIRT provides tools that are easy to use in small samples. It can identify items that scale together well (follow a particular set of NIRT assumptions). NIRT also identifies several subscales with simple structure among the scales, if the items do not form a single unidimensional scale.

[1]  J. Loevinger,et al.  The technic of homogeneous tests compared with some aspects of scale analysis and factor analysis. , 1948, Psychological bulletin.

[2]  W Meredith,et al.  Some results based on a general stochastic model for mental tests , 1965, Psychometrika.

[3]  Robert J. Mokken,et al.  A Theory and Procedure of Scale Analysis. , 1973 .

[4]  D. Andrich A rating formulation for ordered response categories , 1978 .

[5]  B. Wright,et al.  Best test design , 1979 .

[6]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[7]  Georg Rasch,et al.  Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.

[8]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[9]  Patrick Suppes,et al.  When are Probabilistic Explanations Possible , 1981 .

[10]  S. Embretson,et al.  Component Latent Trait Models for Test Design. , 1982 .

[11]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters , 1982 .

[12]  G. Masters A rasch model for partial credit scoring , 1982 .

[13]  Charles Lewis,et al.  A Nonparametric Approach to the Analysis of Dichotomous Item Responses , 1982 .

[14]  S. Embretson Test design : developments in psychology and psychometrics , 1985 .

[15]  P. Rosenbaum,et al.  Conditional Association and Unidimensionality in Monotone Latent Variable Models , 1985 .

[16]  William Stout,et al.  A nonparametric approach for assessing latent trait unidimensionality , 1987 .

[17]  Carl P. M. Rijkes,et al.  Loglinear multidimensional IRT models for polytomously scored items , 1988 .

[18]  D. Grayson,et al.  Two-group classification in latent trait theory: Scores with monotone likelihood ratio , 1988 .

[19]  E. Muraki,et al.  Full-Information Item Factor Analysis , 1988 .

[20]  R. Hambleton Principles and selected applications of item response theory. , 1989 .

[21]  R. Linn Educational measurement, 3rd ed. , 1989 .

[22]  William F. Strout A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation , 1990 .

[23]  William Stout,et al.  A New Item Response Theory Modeling Approach with Applications to Unidimensionality Assessment and Ability Estimation , 1990 .

[24]  B. Lindsay,et al.  Semiparametric Estimation in the Rasch Model and Related Exponential Response Models, Including a Simple Latent Class Model for Item Analysis , 1991 .

[25]  Susan E. Embretson,et al.  A multidimensional latent trait model for measuring learning and change , 1991 .

[26]  Brian W. Junker,et al.  Essential independence and likelihood-based ability estimation for polytomous items , 1991 .

[27]  Marcel A. Croon,et al.  Investigating Mokken scalability of dichotomous items by means of ordinal latent class analysis , 1991 .

[28]  J. Ramsay Kernel smoothing approaches to nonparametric item characteristic curve estimation , 1991 .

[29]  T. C. Oshima,et al.  Multidimensionality and Item Bias in Item Response Theory , 1992 .

[30]  Jules L. Ellis,et al.  Local homogeneity in latent trait models. A characterization of the homogeneous monotone irt model , 1993 .

[31]  William Stout,et al.  A model-based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF , 1993 .

[32]  Ratna Nandakumar,et al.  Refinements of Stout’s Procedure for Assessing Latent Trait Unidimensionality , 1993 .

[33]  B. Junker Conditional association, essential independence and monotone unidimensional Item response models , 1993 .

[34]  B. Junker,et al.  Factor composition of the Suicide Intent Scale. , 1993, Suicide & life-threatening behavior.

[35]  Huynh Huynh,et al.  A new proof for monotone likelihood ratio for the sum of independent bernoulli random variables , 1994 .

[36]  Robert J. Mislevy,et al.  Test Theory for A New Generation of Tests , 1994 .

[37]  Robert J. Mislevy,et al.  TEST THEORY RECONCEIVED , 1994 .

[38]  Klaas Sijtsma,et al.  Selection of Unidimensional Scales From a Multidimensional Item Bank in the Polytomous Mokken I RT Model , 1995 .

[39]  Gerhard H. Fischer,et al.  The Linear Logistic Test Model , 1995 .

[40]  Fritz Drasgow,et al.  Fitting Polytomous Item Response Theory Models to Multiple-Choice Tests , 1995 .

[41]  J. Ramsay,et al.  Examining scale discriminability in the BDI and CES-D as a function of depressive severity. , 1995 .

[42]  Kikumi K. Tatsuoka,et al.  Architecture of knowledge structures and cognitive diagnosis: A statistical pattern recognition and classification approach. , 1995 .

[43]  S. Chipman,et al.  Cognitively diagnostic assessment , 1995 .

[44]  Cees A. W. Glas,et al.  Testing the Rasch Model , 1995 .

[45]  I. W. Molenaar,et al.  Rasch models: foundations, recent developments and applications , 1995 .

[46]  Brian Habing,et al.  ANALYSIS OF LATENT DIMENSIONALITY OF DICHOTOMOUSLY AND POLYTOMOUSLY SCORED TEST DATA , 1996 .

[47]  Daniel Bolt,et al.  DIFFERENTIAL ITEM FUNCTIONING: ITS MULTIDIMENSIONAL MODEL AND RESULTING SIBTEST DETECTION PROCEDURE , 1996 .

[48]  Brian Habing,et al.  Conditional Covariance-Based Nonparametric Multidimensionality Assessment , 1996 .

[49]  H. Kim A NEW INDEX OF DIMENSIONALITY - DETECT , 1996 .

[50]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[51]  Louis V. DiBello,et al.  A Kernel-Smoothed Version of SIBTEST With Applications to Local DIF Inference and Function Estimation , 1996 .

[52]  M. Gessaroli,et al.  Using an Approximate Chi-Square Statistic to Test the Number of Dimensions Underlying the Responses to a Set of Items , 1996 .

[53]  K Sijtsma,et al.  A survey of theory and methods of invariant item ordering. , 1996, The British journal of mathematical and statistical psychology.

[54]  W. Stout,et al.  A new procedure for detection of crossing DIF , 1996 .

[55]  Raymond J. Adams,et al.  The Multidimensional Random Coefficients Multinomial Logit Model , 1997 .

[56]  G. van Engelenburg On psychometric models for polytomous items with ordered categories within the framework of item response theory , 1997 .

[57]  Roderick P. McDonald,et al.  Normal-Ogive Multidimensional Model , 1997 .

[58]  Ronald K. Hambleton,et al.  Handbook of Modern Item Response Theory. , 1997 .

[59]  James O. Ramsay,et al.  A Functional Approach to Modeling Test Data , 1997 .

[60]  I. W. Molenaar,et al.  A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks , 1997 .

[61]  Ivo W. Molenaar,et al.  Nonparametric Models for Polytomous Responses , 1997 .

[62]  Susan E. Embretson,et al.  Multicomponent Response Models , 1997 .

[63]  B. Junker,et al.  A characterization of monotone unidimensional latent variable models , 1997 .

[64]  J. Douglas Joint consistency of nonparametric item characteristic curve and ability estimation , 1997 .

[65]  B. Junker,et al.  Invariant item ordering of transitive reasining tasks , 1997 .

[66]  Brian W. Junker,et al.  Stochastic ordering using the latent trait and the sum score in polytomous IRT models , 1997 .

[67]  R. J. Mokken,et al.  Handbook of modern item response theory , 1997 .

[68]  Mark D. Reckase,et al.  A Linear Logistic Multidimensional Model for Dichotomous Item Response Data , 1997 .

[69]  Robert J. Mokken,et al.  Nonparametric Models for Dichotomous Responses , 1997 .

[70]  Ludovica Maria Wilhelmina Akkermans Studies on statistical models for polytomously scored test items , 1998 .

[71]  Klaas Sijtsma,et al.  Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models , 1998 .

[72]  Feng Yu,et al.  Assessing Unidimensionality of Polytomous Data , 1998 .

[73]  J. Rost,et al.  Applications of Latent Trait and Latent Class Models in the Social Sciences , 1998 .

[74]  Furong Gao,et al.  Investigating Local Dependence With Conditional Covariance Functions , 1998 .

[75]  A. Béguin,et al.  MCMC estimation of multidimensional IRT models , 1998 .

[76]  Klaas Sijtsma,et al.  Methodology Review: Nonparametric IRT Approaches to the Analysis of Dichotomous Item Scores , 1998 .

[77]  Efficient nonparametric approaches for estimating the operating characteristics of discrete item responses , 1998 .

[78]  K. Sijtsma,et al.  Knowledge of Solution Strategies and IRT Modeling of Items for Transitive Reasoning , 1999 .

[79]  William Stout,et al.  Conditional covariance structure of generalized compensatory multidimensional items , 1999 .

[80]  Brian W. Junker,et al.  Latent and Manifest Monotonicity in Item Response Models , 2000 .

[81]  F. Bartolucci,et al.  A likelihood ratio test for $MTP_2$ within binary variables , 2000 .

[82]  Anne Boomsma,et al.  Essays on Item Response Theory , 2000 .

[83]  Clement A. Stone Monte Carlo Based Null Distribution for an Alternative Goodness‐of‐Fit Test Statistic in IRT Models , 2000 .

[84]  Klaas Sijtsma,et al.  The person response function as a tool in person-fit research , 2001 .

[85]  I. W. Molenaar,et al.  Thirty Years of Nonparametric Item Response Theory , 2001 .

[86]  Jeroen K. Vermunt,et al.  The Use of Restricted Latent Class Models for Defining and Testing Nonparametric and Parametric Item Response Theory Models , 2001 .

[87]  Klaas Sijtsma,et al.  Progress in NIRT analysis of polytomous item scores : Dilemmas and practical solutions , 2001 .

[88]  B. Junker,et al.  Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric Item Response Theory , 2001 .

[89]  Brian Habing,et al.  Nonparametric Regression and the Parametric Bootstrap for Local Dependence Assessment , 2001 .

[90]  Stan Lipovetsky,et al.  Latent Variable Models and Factor Analysis , 2001, Technometrics.

[91]  Daniel M. Bolt,et al.  Conditional Covariance-Based Representation of Multidimensional Test Structure , 2001 .

[92]  L. Andries van der Ark,et al.  Relationships and Properties of Polytomous Item Response Theory Models , 2001 .

[93]  Jeffrey Douglas,et al.  Nonparametric Item Response Function Estimation for Assessing Parametric Model Fit , 2001 .

[94]  William Stout,et al.  Nonparametric Item Response Theory: A Maturing and Applicable Measurement Modeling Approach , 2001 .