The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study

We have investigated a series of glasses and melts along the GeO2–SiO2 join using in situ Raman spectroscopy. The results for both the glasses and melts are consistent with a continuous random network in which there are ‘regions’ that are SiO2-like, GeO2-like and mixed GeO2–SiO2-like. Incorporation of GeO2 into the SiO2 network is initially accommodated via the 3- and 4-membered SiO4 rings which are lost as they convert to larger mixed Ge/Si rings. The LO–TO mode behavior is also consistent with a network that is composed of different ‘regions’ and is similar to that expected from the Bruggeman effective media model. At the highest temperatures there are indications that the mixed Ge/Si rings convert back to small 3-membered GeO4 rings and large SiO4 rings; the small 3- and 4-membered SiO4 rings are not reformed.

[1]  X. Nian,et al.  A Raman study of the ring defects in GeO2-SiO2 glasses , 1989 .

[2]  A. E. Geissberger,et al.  Raman studies of vitreous Si O 2 versus fictive temperature , 1983 .

[3]  P. McMillan,et al.  Structural studies and polymorphism in amorphous solids and liquids at high pressure. , 2006, Chemical Society reviews.

[4]  M. Micoulaut,et al.  The structure of amorphous, crystalline and liquid GeO2 , 2006, cond-mat/0609730.

[5]  P. McMillan Polyamorphic transformations in liquids and glasses , 2004 .

[6]  Laurent Chapon,et al.  A Neutron Diffraction Study of the Thermal Stability of the α-Quartz-Type Structure in Germanium Dioxide , 2002 .

[7]  Kirk Ct,et al.  Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. , 1988 .

[8]  P. McMillan,et al.  Polyamorphism and liquid–liquid phase transitions: challenges for experiment and theory , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  C. Martinet,et al.  Structural studies of germanium doped silica glasses: the role of the fictive temperature , 2003 .

[10]  Fujii,et al.  Infrared absorption in SiO2-Ge composite films: Influences of Ge microcrystals on the longitudinal-optical phonons in SiO2. , 1992, Physical review. B, Condensed matter.

[11]  P. McMillan,et al.  In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids , 1995 .

[12]  C. Martinet,et al.  Polyamorphism: Path to new high density glasses at ambient conditions , 2007 .

[13]  I. Daniel,et al.  Raman spectroscopy, x‐ray diffraction, and phase relationship determinations with a versatile heating cell for measurements up to 3600 K (or 2700 K in air) , 1993 .

[14]  S. Y. Wang,et al.  Structure of alkali-silicate and germania glasses at high temperature and pressure , 1994 .

[15]  Reuben Shuker,et al.  Raman-Scattering Selection-Rule Breaking and the Density of States in Amorphous Materials , 1970 .

[16]  A. Wright,et al.  A neutron diffraction investigation of the structure of vitreous germania , 1988 .

[17]  L. Dubois,et al.  Bonding of alkoxysilanes to dehydroxylated silica surfaces : a new adhesion mechanism , 1993 .

[18]  G. Gutiérrez,et al.  Structure of liquid GeO2 from a computer simulation model. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  F. L. Galeener,et al.  Longitudinal Optical Vibrations in Glasses: GeO 2 and SiO 2 , 1976 .

[20]  G. Papatheodorou,et al.  Temperature-induced structural changes in glassy, supercooled, and molten silica from 77 to 2150 K. , 2006, The Journal of chemical physics.

[21]  M. Micoulaut A comparative numerical analysis of liquid silica and germania , 2004 .

[22]  Sylvia Turrell,et al.  Preparation of SiO2—GeO2: Eu3+ planar waveguides and characterization by waveguide Raman and luminescence spectroscopies , 1998 .

[23]  K. Awazu,et al.  Strained Si–O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses , 2003 .

[24]  B. Warren The Diffraction of X-Rays in Glass , 1934 .

[25]  M. Fleet,et al.  The structure of glasses along the Na2OGeO2 join , 1991 .

[26]  Richard A. Martin,et al.  Structure of glassy GeO2 , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  Shiv k. Sharma,et al.  Raman band assignments of silicate and germanate glasses using high‐pressure and high‐temperature spectral data , 1997 .

[28]  E. F. Riebling Nonideal Mixing in Binary Ge0,‐SiO, Glasses , 1968 .

[29]  F. L. Galeener The Raman spectra of defects in neutron bombarded and Ge-rich vitreous GeO2 , 1980 .

[30]  B. Reynard,et al.  A study of SiO2 glass and supercooled liquid to 1950 K via high-temperature Raman spectroscopy , 1994 .

[31]  B. Mysen,et al.  Structural similarity of glasses and melts relevant to petrological processes , 1981 .

[32]  D. Tian,et al.  The vibrational spectra of v-SiO2 and SiO2-GeO2 glasses , 1989 .

[33]  F. L. Galeener,et al.  Vibrational dynamics in isotopically substituted vitreous Ge O 2 , 1983 .

[34]  R. Weeks,et al.  Raman studies of the GeO2 glass preparation history , 1987 .

[35]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[36]  B. Mysen,et al.  Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-SiO2, K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25–1475°C , 1992 .

[37]  Noriyoshi Shibata,et al.  Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3 , 1981 .

[38]  Vibrational study of mixed SiO2-GeO2 glasses , 1990 .

[39]  C. Benmore,et al.  Structure of liquid SiO2: a measurement by high-energy x-ray diffraction. , 2007, Physical review letters.

[40]  G. Henderson THE STRUCTURE OF SILICATE MELTS: A GLASS PERSPECTIVE , 2005 .

[41]  Kazuya Saito,et al.  Silica glass: A material for photonics , 2000 .

[42]  Alfredo Pasquarello,et al.  Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra. , 2005, Physical review letters.

[43]  D. Neuville,et al.  Pressure-induced Ge coordination change and polyamorphism in SiO2–GeO2 glasses , 2004 .

[44]  F. L. Galeener,et al.  Band limits and the vibrational spectra of tetrahedral glasses , 1979 .

[45]  A. Sarkar,et al.  Relationship between composition, density and refractive index for germania silica glasses , 1978 .

[46]  Luming Peng,et al.  Germanosilicate and alkali germanosilicate glass structure: New insights from high-resolution oxygen-17 NMR , 2007 .

[47]  Kazuya Saito,et al.  Microscopic structural changes of SiO2 glasses as a function of temperature investigated by in situ Raman spectroscopy , 2006 .

[48]  D. Neuville,et al.  The structure of SiO2–GeO2 glasses: A spectroscopic study , 2008 .

[49]  R. Car,et al.  Dynamic structure factor of vitreous silica from first principles: Comparison to neutron-inelastic-scattering experiments , 1998 .

[50]  Michael Thorpe,et al.  Phonons in AX2 glasses: From molecular to band-like modes , 1977 .

[51]  Grant S. Henderson,et al.  Dissolution of olivine in basaltic liquids; experimental observations and applications , 1985 .

[52]  M. Ferrari,et al.  Application of molecular dynamics techniques and luminescent probes to the study of glass structure: the SiO2–GeO2 case , 2001 .

[53]  D. Neuville,et al.  Environments around Al, Si, and Ca in aluminate and aluminosilicate melts by X-ray absorption spectroscopy at high temperature , 2008 .

[54]  Alfredo Pasquarello,et al.  Origin of the High-Frequency Doublet in the Vibrational Spectrum of Vitreous SiO2 , 1997, Science.

[55]  T. Roush,et al.  Raman study of the structure of glasses along the join SiO2GeO2 , 1984 .