A practical guide for the functional annotation of genetic variations using SNPnexus

Broader functional annotation of known as well as putative genetic variations is a valuable mean for prioritizing targets in disease studies and large-scale genotyping projects. In this article, we present a practical guide to SNPnexus, a web-based tool that provides an aggregate set of functional annotations for genomic variation data by characterizing related consequences at the transcriptome/proteome levels with in-depth analysis of potential deleterious effects, inferring physical and cytogenetic mapping, reporting related HapMap data, finding overlaps with potential regulatory, structural as well as conserved elements and retrieving links with previously reported genetic disease studies. We focus on the SNPnexus query system, its annotation categories and the biological interpretation of results.

[1]  Steven Wiltshire,et al.  The value of gene-based selection of tag SNPs in genome-wide association studies , 2006, European Journal of Human Genetics.

[2]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[3]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[4]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[5]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[6]  Larry W. Moreland,et al.  REL, a member of the NF-κB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis , 2009, Nature Genetics.

[7]  Serafim Batzoglou,et al.  Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP++ , 2010, PLoS Comput. Biol..

[8]  Alan M. Moses,et al.  In vivo enhancer analysis of human conserved non-coding sequences , 2006, Nature.

[9]  M. Dolan,et al.  The HapMap Resource is Providing New Insights into Ourselves and its Application to Pharmacogenomics , 2008, Bioinformatics and biology insights.

[10]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[11]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[12]  Zhaohui S. Qin,et al.  A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.

[13]  David Haussler,et al.  The UCSC Known Genes , 2006, Bioinform..

[14]  James G. R. Gilbert,et al.  The vertebrate genome annotation (Vega) database , 2004, Nucleic Acids Res..

[15]  Jonathan M. Mudge,et al.  The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. , 2009, Genome research.

[16]  R. Redon,et al.  Relative Impact of Nucleotide and Copy Number Variation on Gene Expression Phenotypes , 2007, Science.

[17]  G. Galbraith,et al.  TRAF1-C5 as a Risk Locus for Rheumatoid Arthritis—A Genomewide Study , 2008 .

[18]  Arshad Khan,et al.  SNPnexus: a web database for functional annotation of newly discovered and public domain single nucleotide polymorphisms , 2008, Bioinform..

[19]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[20]  L. Feuk,et al.  Detection of large-scale variation in the human genome , 2004, Nature Genetics.

[21]  K. Becker,et al.  The Genetic Association Database , 2004, Nature Genetics.

[22]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[23]  Nicholas R. Lemoine,et al.  SNPnexus: a web server for functional annotation of novel and publicly known genetic variants (2012 update) , 2012, Nucleic Acids Res..

[24]  Andreas Prlic,et al.  Ensembl 2007 , 2006, Nucleic Acids Res..

[25]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[26]  C. Farrar,et al.  Effects of PTPN22 C1858T polymorphism on susceptibility and clinical characteristics of British Caucasian rheumatoid arthritis patients. , 2006, Rheumatology.

[27]  J. Lupski Structural variation in the human genome. , 2007, The New England journal of medicine.

[28]  Katsuhiko Murakami,et al.  H-InvDB in 2009: extended database and data mining resources for human genes and transcripts , 2009, Nucleic Acids Res..

[29]  Michael Q. Zhang,et al.  Computational identification of promoters and first exons in the human genome , 2001, Nature Genetics.

[30]  J. Thierry-Mieg,et al.  AceView: a comprehensive cDNA-supported gene and transcripts annotation , 2006, Genome Biology.

[31]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[32]  M. Frommer,et al.  CpG islands in vertebrate genomes. , 1987, Journal of molecular biology.

[33]  Xin Chen,et al.  The TRANSFAC system on gene expression regulation , 2001, Nucleic Acids Res..

[34]  Laurent Lestrade,et al.  snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs , 2005, Nucleic Acids Res..