A 700 MHz laser radar receiver realized in 0.18 μm HV-CMOS

This study presents a CMOS receiver chip realized in 0.18 µm High-Voltage CMOS (HV-CMOS) technology and intended for high precision pulsed time-of-flight laser range finding utilizing high-energy sub-ns laser pulses. The IC chip includes a trans-impedance preamplifier, a post-amplifier and a timing comparator. Timing discrimination is based on leading edge detection and the trailing edge is also discriminated for measuring the width of the pulse. The transimpedance of the channel is 25 kΩ, the uncompensated walk error is 470 ps in the dynamic range of 1:21,000 and the input referred equivalent noise current 450 nA (rms).

[1]  A. A. Abidi On the noise optimum of gigahertz FET transimpedance amplifiers , 1987 .

[2]  Juha Kostamovaara,et al.  Time domain characterization of avalanche photo detectors for sub-ns optical pulses , 2015, 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings.

[3]  Jizhong Xiao,et al.  A continuous wavelet transform-based modulus maxima approach for the walk error compensation of pulsed time-of-flight laser rangefinders , 2016 .

[4]  Juha Kostamovaara,et al.  A Multichannel High-Precision CMOS Time-to-Digital Converter for Laser-Scanner-Based Perception Systems , 2012, IEEE Transactions on Instrumentation and Measurement.

[5]  Juha Kostamovaara,et al.  Pulse width time walk compensation method for a pulsed time-of-flight laser rangefinder , 2009, 2009 IEEE Instrumentation and Measurement Technology Conference.

[6]  S. Celma,et al.  2.5 Gb/s CMOS preamplifier for low-cost fiber-optic receivers , 2011 .

[7]  Yu-Wei Chang,et al.  A 10-Gb/s OEIC with Meshed Spatially-Modulated Photo Detector in 0.18-$\mu{\hbox {m}}$ CMOS Technology , 2011, IEEE Journal of Solid-State Circuits.

[8]  Xiaopeng Yu,et al.  Area-efficient CMOS transimpedance amplifier for optical receivers , 2009 .

[9]  B. Razavi,et al.  10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology , 2003, IEEE J. Solid State Circuits.

[10]  J. Kostamovaara,et al.  Asymmetric waveguide laser diode operated in gain switching mode with high-power optical pulse generation , 2010 .

[11]  J. Nissinen,et al.  Integrated Receiver Including Both Receiver Channel and TDC for a Pulsed Time-of-Flight Laser Rangefinder With cm-Level Accuracy , 2009, IEEE Journal of Solid-State Circuits.

[12]  E. M. Cherry,et al.  The Design of Wide-Band Transistor Feedback Amplifiers , 1963 .

[13]  Zhangming Zhu,et al.  A 77-dB Dynamic Range Low-Power Variable-Gain Transimpedance Amplifier for Linear LADAR , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  Juha Kostamovaara,et al.  A Wide Dynamic Range CMOS Laser Radar Receiver With a Time-Domain Walk Error Compensation Scheme , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Yandong Chen,et al.  High-precision infrared pulse laser ranging for active vehicle anti-collision application , 2011, 2011 International Conference on Electric Information and Control Engineering.

[16]  Juha Kostamovaara,et al.  Properties of the transient of avalanche transistor switching at extreme current densities , 2002 .

[17]  Min-Gu Lee,et al.  Advanced compact 3D lidar using a high speed fiber coupled pulsed laser diode and a high accuracy timing discrimination readout circuit , 2012, Other Conferences.

[18]  R. J. McIntyre,et al.  Comparison of photomultipliers and avalanche photodiodes for laser applications , 1970 .

[19]  J. Kostamovaara,et al.  Radiometric analysis and simulation of signal power function in a short-range laser radar. , 1994, Applied optics.

[20]  Juha Kostamovaara,et al.  An Integrated Laser Radar Receiver Channel with Wide Dynamic Range , 2007, 2007 14th IEEE International Conference on Electronics, Circuits and Systems.

[21]  Hao Zheng,et al.  A linear and wide dynamic range transimpedance amplifier with adaptive gain control technique , 2017 .

[22]  J. Kostamovaara,et al.  Performance improvement by a saturable absorber in gain-switched asymmetric-waveguide laser diodes. , 2013, Optics express.

[23]  Peter Baltus,et al.  An 8-bit 100-MHz full-Nyquist analog-to-digital converter , 1988 .

[24]  J. Kostamovaara,et al.  Spectral filtering for time isolation of intensive picosecond optical pulses from a Q-switched laser diode , 1998 .

[25]  E. Sackinger,et al.  Broadband Circuits for Optical Fiber Communication , 2005 .

[26]  E. H. Bottcher,et al.  Gain modulation of unbiased semiconductor lasers: ultrashort light-pulse generation in the 0.8 μm-1.3 μm wavelength range , 1986 .

[27]  K. Lau Gain switching of semiconductor injection lasers , 1988 .

[28]  Zhangming Zhu,et al.  Design of linear dynamic range and high sensitivity matrix quadrant APDs ROIC for position sensitive detector application , 2017, Microelectron. J..

[29]  Wei Li,et al.  A 12×10 Gb/s fully integrated CMOS parallel optical receiver front-end amplifier array , 2011, Science China Information Sciences.

[30]  J. Kostamovaara,et al.  A high-speed/power laser transmitter for single photon imaging applications , 2014, IEEE SENSORS 2014 Proceedings.

[31]  J. Kostamovaara,et al.  Asymmetric-Waveguide Laser Diode for High-Power Optical Pulse Generation by Gain Switching , 2009, Journal of Lightwave Technology.

[32]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[33]  Hyo-Hoon Park,et al.  Wideband Receiver for a Three-Dimensional Ranging LADAR System , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[34]  A BiCMOS Differential Amplifier and Timing Discriminator for the Receiver of a Laser Radar , 1997 .

[35]  Sang-Gug Lee,et al.  A High-Sensitivity and Low-Walk Error LADAR Receiver for Military Application , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[36]  140-W/40-ps single optical pulses for laser sensor application , 1994 .

[37]  Eduard Säckinger Broadband Circuits for Optical Fiber Communication: Säckinger/Broadband , 2005 .