Asymptotical Structure of Combinatorial Objects

[1]  Mam Riess Jones Color Coding , 1962, Human factors.

[2]  J. Edmonds Minimum partition of a matroid into independent subsets , 1965 .

[3]  Frank Harary,et al.  Graph Theory , 2016 .

[4]  W. Mader Hinreichende Bedingungen für die Existenz von Teilgraphen, die zu einem vollständigen Graphen homöomorph sind , 1972 .

[5]  S. Burr ON THE MAGNITUDE OF GENERALIZED RAMSEY NUMBERS FOR GRAPHS , 1973 .

[6]  L. Lovász Three short proofs in graph theory , 1975 .

[7]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[8]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[9]  Vojtěch Rödl On the chromatic number of subgraphs of a given graph , 1977 .

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  Alon Itai,et al.  The complexity of finding maximum disjoint paths with length constraints , 1982, Networks.

[12]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[13]  Svatopluk Poljak,et al.  On the complexity of the subgraph problem , 1985 .

[14]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[15]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[16]  Béla Bollobás,et al.  The Isoperimetric Number of Random Regular Graphs , 1988, Eur. J. Comb..

[17]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[18]  Alejandro A. Schäffer,et al.  Optimal Node Ranking of Trees in Linear Time , 1989, Inf. Process. Lett..

[19]  Robin Thomas,et al.  A separator theorem for graphs with an excluded minor and its applications , 1990, STOC '90.

[20]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[21]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[22]  Bernd Voigt,et al.  Finding Minimally Weighted Subgraphs , 1991, WG.

[23]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[24]  Wayne Goddard,et al.  Acyclic colorings of planar graphs , 1991, Discret. Math..

[25]  Hal A. Kierstead,et al.  Planar Graph Coloring with an Uncooperative Partner , 1994, Planar Graphs.

[26]  Ton Kloks,et al.  Better Algorithms for the Pathwidth and Treewidth of Graphs , 1991, ICALP.

[27]  Bruce A. Reed,et al.  Finding approximate separators and computing tree width quickly , 1992, STOC '92.

[28]  Avi Wigderson,et al.  Expanders That Beat the Eigenvalue Bound: Explicit Construction and Applications , 1993, Comb..

[29]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[30]  Alexandr V. Kostochka,et al.  On a lower bound for the isoperimetric number of cubic graphs , 1993 .

[31]  Pavol Hell,et al.  Universality of A-mote Graphs , 1993, Eur. J. Comb..

[32]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[33]  Richard H. Schelp,et al.  Graphs with Linearly Bounded Ramsey Numbers , 1993, J. Comb. Theory, Ser. B.

[34]  Noga Alon Subdivided graphs have linear ramsey numbers , 1994, J. Graph Theory.

[35]  Jitender S. Deogun,et al.  On Vertex Ranking for Permutations and Other Graphs , 1994, STACS.

[36]  János Komlós,et al.  Topological Cliques in Graphs , 1994, Combinatorics, Probability and Computing.

[37]  Satish Rao,et al.  Shallow excluded minors and improved graph decompositions , 1994, SODA '94.

[38]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[39]  JANOS KOMLOS,et al.  Topological cliques in graphs II , 1994, Combinatorics, Probability and Computing.

[40]  Robin Thomas,et al.  The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.

[41]  D. Gillman A Chernoff bound for random walks on expander graphs , 1998, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[42]  Béla Bollobás,et al.  Proof of a Conjecture of Mader, Erdös and Hajnal on Topological Complete Subgraphs , 1998, Eur. J. Comb..

[43]  Xuding Zhu,et al.  A bound for the game chromatic number of graphs , 1999, Discret. Math..

[44]  Egon Wanke,et al.  The Tree-Width of Clique-Width Bounded Graphs Without Kn, n , 2000, WG.

[45]  B. Reed,et al.  Polynomial Time Recognition of Clique-Width ≤ 3 Graphs , 2000 .

[46]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[47]  Jaroslav Nesetril,et al.  Duality Theorems for Finite Structures (Characterising Gaps and Good Characterisations) , 2000, J. Comb. Theory, Ser. B.

[48]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[49]  Udi Rotics,et al.  On the Relationship between Clique-Width and Treewidth , 2001, WG.

[50]  Bruno Courcelle,et al.  On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..

[51]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs , 2002, Algorithmica.

[52]  Sun-Yuan Hsieh On vertex ranking of a starlike graph , 2002, Inf. Process. Lett..

[53]  Valentine Kabanets,et al.  2 Better Tradeoffs 2 . 1 Hardness amplification via error-correcting codes , 2007 .

[54]  Michael U. Gerber,et al.  Algorithms for vertex-partitioning problems on graphs with fixed clique-width , 2003, Theor. Comput. Sci..

[55]  J. Nesetril,et al.  Colorings and Homomorphisms of Minor Closed Classes , 2003 .

[56]  Arie M. C. A. Koster,et al.  Contraction and Treewidth Lower Bounds , 2004, J. Graph Algorithms Appl..

[57]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[58]  Bruce A. Reed,et al.  Excluding any graph as a minor allows a low tree-width 2-coloring , 2004, J. Comb. Theory, Ser. B.

[59]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[60]  Udi Rotics,et al.  Clique-width minimization is NP-hard , 2006, STOC '06.

[61]  Jaroslav Nesetril,et al.  Linear time low tree-width partitions and algorithmic consequences , 2006, STOC '06.

[62]  Jaroslav Nesetril,et al.  Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..

[63]  B. Mohar,et al.  Graph minors XXIII. Nash-Williams' immersion conjecture , 2010, J. Comb. Theory B.