Modulation of the activity of Clostridium perfringens neuraminidase by the molecular organization of gangliosides in monolayers.

[1]  A. Guidotti,et al.  Molecular parameters of semisynthetic derivatives of gangliosides and sphingosine in monolayers at the air-water interface. , 1993, Chemistry and physics of lipids.

[2]  J. D. Bell,et al.  Molecular details of the activation of soluble phospholipase A2 on lipid bilayers. Comparison of computer simulations with experimental results. , 1992, The Journal of biological chemistry.

[3]  H. Rahmann,et al.  Calcium-ganglioside interactions and synaptic plasticity: effect of calcium on specific ganglioside/peptide (valinomycin, gramicidin A)-complexes in mixed mono- and bilayers , 1992, Neurochemistry International.

[4]  R. Yu,et al.  Role of Myelin‐Associated Neuraminidase in the Ganglioside Metabolism of Rat Brain Myelin , 1992, Journal of neurochemistry.

[5]  M. Masserini,et al.  Evidence for Nonrandom Distribution of GD1 a Ganglioside in Rabbit Brain Microsomal Membranes , 1991, Journal of neurochemistry.

[6]  G. Fidelio,et al.  Molecular parameters of gangliosides in monolayers: comparative evaluation of suitable purification procedures. , 1991, Journal of biochemistry.

[7]  M. Masserini,et al.  Influence of glycolipid oligosaccharide and long-chain base composition on the thermotropic properties of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides. , 1989, Biochemistry.

[8]  B. Perez-Ramirez,et al.  Pyridoxal phosphate as a probe of the cytoplasmic domains of transmembrane proteins: application to the nicotinic acetylcholine receptor. , 1989, Biochemistry.

[9]  O. Berg,et al.  The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: hopping versus scooting. , 1989, Biochimica et biophysica acta.

[10]  I. Bianco,et al.  Modulation of phospholipase A2 activity by neutral and anionic glycosphingolipids in monolayers. , 1989, The Biochemical journal.

[11]  M. Masserini,et al.  Interactions of proteins with ganglioside-enriched microdomains on the membrane: the lateral phase separation of molecular species of GD1a ganglioside, having homogeneous long-chain base composition, is recognized by Vibrio cholerae sialidase. , 1988, Biochemistry.

[12]  G. Montich,et al.  Surface topography of sulfatide and gangliosides in unilamellar vesicles of dipalmitoylphosphatidylcholine. , 1988, Chemistry and physics of lipids.

[13]  J. Sturtevant,et al.  Effect of calcium ions on the thermotropic behaviour of neutral and anionic glycosphingolipids. , 1987, Biochimica et biophysica acta.

[14]  J. Vliegenthart,et al.  Purification and kinetic properties of sialidase from Clostridium perfringens. , 1987, Biological chemistry Hoppe-Seyler.

[15]  S. Tsuiki,et al.  Evidence for sialidase hydrolyzing gangliosides GM2 and GM1 in rat liver plasma membrane , 1986, FEBS letters.

[16]  R. Yu,et al.  Further Characterization of a Myelin‐Associated Neuraminidase: Properties and Substrate Specificity , 1986, Journal of neurochemistry.

[17]  J. Sclafani,et al.  Further Evidence for an Intrinsic Neuraminidase in CNS Myelin , 1986, Journal of neurochemistry.

[18]  S. McLaughlin,et al.  The interaction of calcium with gangliosides in bilayer membranes. , 1985, Biochimica et biophysica acta.

[19]  J. Sturtevant,et al.  Thermotropic behavior of binary mixtures of dipalmitoylphosphatidylcholine and glycosphingolipids in aqueous dispersions. , 1985, Biochimica et biophysica acta.

[20]  E. Freire,et al.  Modulation of neuraminidase activity by the physical state of phospholipid bilayers containing gangliosides Gd1a and Gt1b. , 1984, Biochemistry.

[21]  R. Yu,et al.  Analysis of brain lipids by high performance thin-layer chromatography and densitometry. , 1983, Journal of lipid research.

[22]  R. Caputto,et al.  Configuration and interaction of the polar head group in gangliosides. , 1980, The Biochemical journal.

[23]  Y. Nagai,et al.  Action of Arthrobacter ureafaciens sialidase on sialoglycolipid substrates. Mode of action and highly specific recognition of the oligosaccharide moiety of ganglioside GM1. , 1979, The Journal of biological chemistry.

[24]  R. Caputto,et al.  Surface behaviour of gangliosides and related glycosphingolipids. , 1978, The Biochemical journal.

[25]  E. Noble,et al.  NEURAMINIDASE‐RELEASABLE SURFACE SIALIC ACID OF CULTURED ASTROBLASTS EXPOSED TO ETHANOL , 1976, Journal of neurochemistry.

[26]  H. Rauvala,et al.  Action of Clostridium perfringens neuraminidase on gangliosides GM1 and GM2 above and below the critical micelle concentration of substrate , 1976, FEBS letters.

[27]  A. Rosenberg,et al.  Action of Vibrio cholerae neuraminidase (sialidase) upon the surface of intact cells and their isolated sialolipid components. , 1973, The Journal of biological chemistry.

[28]  D. Wenger,et al.  Action of neuraminidase (EC 3.2.1.18) from Clostridium perfringens on brain gangliosides in the presence of bile salts1 , 1973, Journal of neurochemistry.

[29]  R. Verger,et al.  Monolayer techniques for studying phospholipase kinetics. , 1991, Methods in enzymology.

[30]  I. Bianco,et al.  Evidence for the presence of hydrocarbon impurities in batches of analytical-grade sucrose , 1989 .

[31]  J. Portoukalian,et al.  Hydrolysis of all gangliosides, including GM1 and GM2, on thin-layer plates by Vibrio cholerae neuraminidase. , 1986, Journal of chromatography.

[32]  Y. Kuroda,et al.  Ganglioside composition of chromaffin granule membrane in bovine adrenal medulla. , 1984, Journal of biochemistry.

[33]  R. Veh,et al.  Interaction of human brain neuroaminidase with tritium-labelled gangliosides. , 1978, Advances in experimental medicine and biology.