Annihilators and the CS-condition

Abstract It is proved that if every cyclic right R-module is torsionless and R is a left CS-ring then R is semiperfect left continuous with soc(RR)essential in RR. As a consequence every right cogenerator, left CS-ring R is shown to be right pseudo-Frobenius and left continuous, and an example is given to show that R need not be left selfinjective. It is also proved that if R is a left CS-ring and every cyclic right R-module embeds in a free module, then R is quasi-Frobenius if and only if J(R) ⊆ Z(RR).

[1]  J. Rada,et al.  On Semiregular Rings whose Finitely Generated Modules Embed in Free Modules , 1997, Canadian Mathematical Bulletin.

[2]  M. Yousif On Continuous Rings , 1997 .

[3]  J. G. Pardo,et al.  Rings with finite essential socle , 1997 .

[4]  J. G. Pardo,et al.  Essential embedding of cyclic modules in projectives , 1997 .

[5]  W. K. Nicholson,et al.  Principally Injective Rings , 1995 .

[6]  John Dauns Modules and Rings , 1994 .

[7]  C. Faith,et al.  The structure of Johns rings , 1994 .

[8]  C. Faith,et al.  A counter example to a conjecture of Johns , 1992 .

[9]  V. Camillo,et al.  Continuous Rings with Acc on Annihilators , 1991, Canadian Mathematical Bulletin.

[10]  Sergio R. López-Permouth,et al.  Rings whose cyclics are essentially embeddable in projective modules , 1990 .

[11]  V. Camillo Commutative rings whose principal ideals are annihilators , 1989 .

[12]  Friedrich Dischinger,et al.  Left pf is not right pf , 1986 .

[13]  C. R. Hajarnavis,et al.  On dual rings and their modules , 1985 .

[14]  C. Faith Embedding modules in projectives: A report on a problem , 1982 .

[15]  Carl Faith,et al.  Algebra II: Ring Theory , 1976 .

[16]  Frank W. Anderson,et al.  Rings and Categories of Modules , 1974 .

[17]  J. Björk Rings satisfying certain chain conditions. , 1970 .

[18]  E. Rutter Two characterizations of quasi-Frobenius rings. , 1969 .

[19]  H. Tachikawa A generalization of quasi-Frobenius rings , 1969 .

[20]  Y. Utumi On continuous rings and self injective rings , 1965 .

[21]  I. Herstein,et al.  Nil Rings Satisfying Certain Chain Conditions , 1964, Canadian Journal of Mathematics.