Matching Permeability and Permittivity of Ga-Substituting Mg-Cd Ferrites for High-Frequency Antennas

[1]  C. Liu,et al.  Correlations between the structural characteristics and enhanced microwave dielectric properties of V–modified Li3Mg2NbO6 ceramics , 2018, Ceramics International.

[2]  G. Wang,et al.  Low loss, enhanced magneto-dielectric properties of Bi2O3 doped Mg-Cd ferrites for high frequency antennas , 2018 .

[3]  D. Varshney,et al.  Effect of d-block element Co 2+ substitution on structural, Mössbauer and dielectric properties of spinel copper ferrites , 2017 .

[4]  J. Havlica,et al.  Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion , 2017 .

[5]  Y. Nie,et al.  Monodomain MgCuZn ferrite with equivalent permeability and permittivity for broad frequency band applications , 2017 .

[6]  Jie Li,et al.  Influence of lightly Sm-substitution on crystal structure, magnetic and dielectric properties of BiFeO3 ceramics , 2016 .

[7]  A. Salker,et al.  Tailoring the super-paramagnetic nature of MgFe2O4 nanoparticles by In3+ incorporation , 2016 .

[8]  M. A. Hakim,et al.  Structural, magnetic and electrical characterization of Cd-substituted Mg ferrites synthesized by double sintering technique , 2016 .

[9]  J. Mattei,et al.  Low loss composite nano ferrite with matching permittivity and permeability in UHF band , 2016 .

[10]  V. Harris,et al.  BiFeO3 tailored low loss M-type hexaferrite composites having equivalent permeability and permittivity for very high frequency applications , 2015 .

[11]  R. Boncukçuoǧlu,et al.  The effects of heat treatment on the synthesis of nickel ferrite (NiFe2O4) nanoparticles using the microwave assisted combustion method , 2015 .

[12]  M. Mohamed,et al.  Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite , 2014 .

[13]  Huaiwu Zhang,et al.  Low loss NiZn spinel ferrite–W-type hexaferrite composites from BaM addition for antenna applications , 2014 .

[14]  Huaiwu Zhang,et al.  Influence of La-Co substitution on the structure and magnetic properties of low-temperature sintered M-type barium ferrites , 2013 .

[15]  A. Abramson,et al.  Densification effects on the electrical behavior of uniaxially compacted bismuth nanowires , 2012 .

[16]  Jungyub Lee,et al.  Design of Small Antennas for Mobile Handsets Using Magneto-Dielectric Material , 2012, IEEE Transactions on Antennas and Propagation.

[17]  Heli Jantunen,et al.  Low loss dielectric materials for LTCC applications: a review , 2008 .

[18]  L. Kong,et al.  Electrical and magnetic properties of magnesium ferrite ceramics doped with Bi2O3 , 2007 .

[19]  Yeow-Beng Gan,et al.  Magneto‐Dielectric Properties of Mg–Cu–Co Ferrite Ceramics: II. Electrical, Dielectric, and Magnetic Properties , 2007 .

[20]  S. Komarneni,et al.  Microwave hydrothermal synthesis of nanosize PbO added Mg-Cu-Zn ferrites , 2006 .

[21]  M. Kaiser,et al.  Low frequency conductivity study of gallium‐substituted magnesium–copper spinel ferrite , 2005 .

[22]  N. Alford,et al.  Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina , 2005 .

[23]  M. Kaiser Composition, temperature and frequency dependence of dielectric parameters in Ga‐substituted Co–Cu mixed ferrites , 2004 .

[24]  Anja K. Skrivervik,et al.  PCS antenna design: the challenge of miniaturization , 2001 .

[25]  J. Rodríguez-Carvajal,et al.  Cation distribution and intrinsic magnetic properties of Co‐Ti‐doped M‐type barium ferrite , 1991 .

[26]  Stuart A. Long,et al.  An experimental investigation of electrically thick rectangular microstrip antennas , 1986 .

[27]  R. Hansen,et al.  Fundamental limitations in antennas , 1981, Proceedings of the IEEE.