On constrained Newton linearization and multigrid for variational inequalities

Summary. We consider the fast solution of a class of large, piecewise smooth minimization problems. For lack of smoothness, usual Newton multigrid methods cannot be applied. We propose a new approach based on a combination of convex minization with constrained Newton linearization. No regularization is involved. We show global convergence of the resulting monotone multigrid methods and give polylogarithmic upper bounds for the asymptotic convergence rates. Efficiency is illustrated by numerical experiments.