Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design

Abstract Tremendous efforts have been dedicated into the development of high‐performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery‐like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery‐like behavior are discussed. Furthermore, guidelines for material selection, the state‐of‐the‐art materials, and the electrode design rules to advanced electrode are proposed.

[1]  L. Kavan,et al.  Capacitive contribution to Li-storage in TiO2 (B) and TiO2 (anatase) , 2014 .

[2]  Yuguang Ma,et al.  High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes , 2016 .

[3]  X. Lou,et al.  A Flexible Quasi‐Solid‐State Asymmetric Electrochemical Capacitor Based on Hierarchical Porous V2O5 Nanosheets on Carbon Nanofibers , 2015 .

[4]  Xiqian Yu,et al.  Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using In Situ X‐Ray Absorption Spectroscopy , 2015 .

[5]  S. Devaraj,et al.  Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties , 2008 .

[6]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[7]  Pseudocapacitive characteristic of lithium ion storage in hydrogen titanate nanotubes , 2006 .

[8]  D. Bavykin,et al.  Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications , 2006 .

[9]  Minshen Zhu,et al.  Nanostructured Polypyrrole as a flexible electrode material of supercapacitor , 2016 .

[10]  Jing Sun,et al.  A Promising Way To Enhance the Electrochemical Behavior of Flexible Single-Walled Carbon Nanotube/Polyaniline Composite Films , 2010 .

[11]  Huajun Zheng,et al.  H–TiO2/C/MnO2 nanocomposite materials for high-performance supercapacitors , 2015, Journal of Nanoparticle Research.

[12]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[13]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[14]  D. Macarthur The Proton Diffusion Coefficient for the Nickel Hydroxide Electrode , 1970 .

[15]  C. Zhong,et al.  The mechanism of electrochemical charge - transfer reactions on conducting polymer films , 1991 .

[16]  A. J. Frank,et al.  Pseudocapacitive Lithium-Ion Storage in Oriented Anatase TiO2 Nanotube Arrays , 2012 .

[17]  Y. Lan,et al.  Intercalation Pseudocapacitance of Exfoliated Molybdenum Disulfide for Ultrafast Energy Storage , 2016 .

[18]  Yan Zhao,et al.  Preparation and capacitive properties of sheet V6O13 for electrochemical supercapacitor , 2009 .

[19]  G. Soloveichik Battery technologies for large-scale stationary energy storage. , 2011, Annual review of chemical and biomolecular engineering.

[20]  B. Conway,et al.  Electrochemical surface science: The study of monolayers of ad-atoms and solvent molecules at charged metal interfaces , 1984 .

[21]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[22]  Norio Miura,et al.  Polyaniline- MnO2 Composite Electrode for High Energy Density Electrochemical Capacitor , 2004 .

[23]  Majid Beidaghi,et al.  Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz‐Crystal Admittance and In Situ Electronic Conductance Measurements , 2015 .

[24]  Liquan Chen,et al.  Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. , 2015, Journal of the American Chemical Society.

[25]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[26]  Jitong Wang,et al.  Free-Standing T-Nb₂O₅/Graphene Composite Papers with Ultrahigh Gravimetric/Volumetric Capacitance for Li-Ion Intercalation Pseudocapacitor. , 2015, ACS nano.

[27]  B. Dunn,et al.  On the correlation between mechanical flexibility, nanoscale structure, and charge storage in periodic mesoporous CeO(2) thin films. , 2010, ACS nano.

[28]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[29]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[30]  Kai Zhang,et al.  Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes , 2010 .

[31]  B. Conway,et al.  Electrochemical oxide film formation at noble metals as a surface-chemical process , 1995 .

[32]  L. Kavan,et al.  Pseudocapacitive Lithium Storage in TiO2(B) , 2005 .

[33]  Qin Yang,et al.  Study of PEDOT–PSS in carbon nanotube/conducting polymer composites as supercapacitor electrodes in aqueous solution , 2014 .

[34]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[35]  François Béguin,et al.  Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes , 2006 .

[36]  Chilin Li,et al.  Sodium Storage and Pseudocapacitive Charge in Textured Li4Ti5O12 Thin Films , 2014 .

[37]  J. Tanguy,et al.  Analysis of the redox mechanism of conducting polymers derived from impedance, cyclic voltammetry and electrochemical voltage spectroscopy , 1991 .

[38]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[39]  L. Bing,et al.  Cyclic voltammetric studies of stabilized α-nickel hydroxide electrode , 1999 .

[40]  R. Marcilla,et al.  Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance. , 2016, Nanoscale.

[41]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[42]  Jeffrey W. Long,et al.  To Be or Not To Be Pseudocapacitive , 2015 .

[43]  Jim P. Zheng,et al.  Electrochemical Capacitors Using Hydrous Ruthenium Oxide and Hydrogen Inserted Ruthenium Oxide , 1998 .

[44]  P. Liu,et al.  Design of Carbon Black/Polypyrrole Composite Hollow Nanospheres and Performance Evaluation as Electrode Materials for Supercapacitors , 2014 .

[45]  Chem. , 2020, Catalysis from A to Z.

[46]  B. Conway,et al.  Computer simulation of the kinetic behaviour of surface reactions driven by a linear potential sweep: Part II. Sequential reactions of adsorbed species , 1977 .

[47]  Y. Nishina,et al.  Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications , 2016, Scientific Reports.

[48]  Yongyao Xia,et al.  Electrochemical capacitors: mechanism, materials, systems, characterization and applications. , 2016, Chemical Society reviews.

[49]  F. Béguin,et al.  Unusual energy enhancement in carbon-based electrochemical capacitors , 2012 .

[50]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[51]  Lin Gu,et al.  Lithium Storage in Li4Ti5O12 Spinel: The Full Static Picture from Electron Microscopy , 2012, Advanced materials.

[52]  Andrew Cruden,et al.  Energy storage in electrochemical capacitors: designing functional materials to improve performance , 2010 .

[53]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[54]  Yi Cui,et al.  Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. , 2011, Nano letters.

[55]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[56]  Fang Hu,et al.  Effect of Graphene Oxide as a Dopant on the Electrochemical Performance of Graphene Oxide/Polyaniline Composite , 2014 .

[57]  John Wang,et al.  Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. , 2010, Journal of the American Chemical Society.

[58]  Teng Zhai,et al.  Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. , 2014, Nano letters.

[59]  Dianlong Wang,et al.  Graphene-based composites for electrochemical energy storage , 2017, Energy Storage Materials.

[60]  B. Dunn,et al.  Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors. , 2009, Journal of the American Chemical Society.

[61]  T. Swager,et al.  Supercapacitors from Free-Standing Polypyrrole/Graphene Nanocomposites , 2013 .

[62]  Xiulei Ji,et al.  Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling , 2015, Nature Communications.

[63]  S. Trasatti,et al.  Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes , 1974 .

[64]  Hao Jiang,et al.  Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances , 2012 .

[65]  Jinqiu Zhou,et al.  Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors , 2015 .

[66]  Pierre-Louis Taberna,et al.  High capacitance of surface-modified 2D titanium carbide in acidic electrolyte , 2014 .

[67]  L. Mai,et al.  Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries , 2007 .

[68]  Zhen Chen,et al.  Synergistic capacitive behavior between polyaniline and carbon black , 2017 .

[69]  Sang Bok Lee,et al.  An all-in-one nanopore battery array. , 2014, Nature nanotechnology.

[70]  Woo-Sik Kim,et al.  Structure and compositional control of MoO3 hybrids assembled by nanoribbons for improved pseudocapacitor rate and cycle performance. , 2012, Nanoscale.

[71]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[72]  Brian E. Conway,et al.  Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices , 2003 .

[73]  Zilong Tang,et al.  Excellent Low-Temperature Lithium Intercalation Performance of Nanostructured Hydrogen Titanate Electrodes , 2005 .

[74]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[75]  Xueping Gao,et al.  Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods , 2007 .

[76]  Ran Liu,et al.  Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor , 2008, Nanotechnology.

[77]  Baoyang Lu,et al.  Electrosynthesis and electrochemical capacitive behavior of a new nitrogen PEDOT analogue-based polymer electrode , 2016 .

[78]  Kevin M. Cook,et al.  Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films , 2014, Chemistry of materials : a publication of the American Chemical Society.

[79]  Daliang Zhang,et al.  Design and synthesis of high performance LiFePO4/C nanomaterials for lithium ion batteries assisted by a facile H+/Li+ ion exchange reaction , 2015 .

[80]  Wang Xiaofeng,et al.  Oxidation behavior of CNTs and the electric double layer capacitor made of the CNT electrodes , 2003 .

[81]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[82]  Eleanor I. Gillette,et al.  Self-limiting electrodeposition of hierarchical MnO₂ and M(OH)₂/MnO₂ nanofibril/nanowires: mechanism and supercapacitor properties. , 2013, ACS nano.

[83]  Bruce Dunn,et al.  High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. , 2012, ACS nano.

[84]  C. Zhi,et al.  Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors. , 2016, ACS applied materials & interfaces.

[85]  V. Presser,et al.  Carbons and Electrolytes for Advanced Supercapacitors , 2014, Advanced materials.

[86]  Teng Zhai,et al.  H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors , 2013, Advanced materials.

[87]  Haoshen Zhou,et al.  High rate performances of hydrogen titanate nanowires electrodes , 2008 .

[88]  J. Moon,et al.  Nitrogen-Doped Carbon Nanotube Spherical Particles for Supercapacitor Applications: Emulsion-Assisted Compact Packing and Capacitance Enhancement. , 2015, ACS applied materials & interfaces.

[89]  G. Yushin,et al.  Effect of Carbon Particle Size on Electrochemical Performance of EDLC , 2008 .

[90]  Shiguo Zhang,et al.  Protic-salt-derived nitrogen/sulfur-codoped mesoporous carbon for the oxygen reduction reaction and supercapacitors. , 2015, ChemSusChem.

[91]  R. Penner,et al.  Lithographically Patterned Gold/Manganese Dioxide Core/Shell Nanowires for High Capacity, High Rate, and High Cyclability Hybrid Electrical Energy Storage , 2012 .

[92]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[93]  Mathieu Toupin,et al.  Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors , 2006 .

[94]  W. Basirun,et al.  Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor , 2015 .

[95]  Brian E. Conway,et al.  Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors Comparison with Ruthenium Oxide , 1998 .

[96]  C. Yuan,et al.  Enhanced capacitive performance of TiO2 nanotubes with molybdenum oxide coating , 2014 .

[97]  Yongyao Xia,et al.  Structural transformation of layered hydrogen trititanate (H2Ti3O7) to TiO2(B) and its electrochemical profile for lithium-ion intercalation , 2011 .

[98]  I. Shakir,et al.  Evaluation of Electrochemical Charge Storage Mechanism and Structural Changes in Intertwined MoO3–MWCNTs Composites for Supercapacitor Applications , 2014 .

[99]  H. Alshareef,et al.  Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors , 2013 .

[100]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[101]  Satish K. Nune,et al.  In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. , 2014, ACS applied materials & interfaces.

[102]  Hsisheng Teng,et al.  Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics , 2002 .

[103]  Ye Hou,et al.  Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. , 2010, Nano letters.

[104]  Byungwoo Park,et al.  Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell , 2000 .

[105]  Ronald A. Outlaw,et al.  Graphene electric double layer capacitor with ultra-high-power performance , 2011 .

[106]  Patricia H. Smith,et al.  Mesoporous anhydrous RuO2 as a supercapacitor electrode material , 2004 .

[107]  Ying Wang,et al.  Thermal Annealing and Graphene Modification of Exfoliated Hydrogen Titanate Nanosheets for Enhanced Lithium-ion Intercalation Properties , 2014 .

[108]  Tingfeng Yi,et al.  Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries , 2015 .

[109]  W. J. Lorenz,et al.  Underpotential deposition of lead on polycrystalline and single-crystal gold surfaces: Part I. Thermodynamics , 1980 .

[110]  Hao Jiang,et al.  Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. , 2011, Chemical communications.

[111]  Weihua Tang,et al.  MnO2 Nanorods Intercalating Graphene Oxide/Polyaniline Ternary Composites for Robust High-Performance Supercapacitors , 2014, Scientific Reports.

[112]  P. Eguía,et al.  Energy storage technologies for electric applications , 2011 .

[113]  D. Corrigan,et al.  Effect of Coprecipitated Metal Ions on the Electrochemistry of Nickel Hydroxide Thin Films: Cyclic Voltammetry in 1M KOH , 1989 .

[114]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[115]  Metal Oxide Cathode Materials for Electrochemical Energy Storage: A Review , 1990 .

[116]  B. Dunn,et al.  The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb2O5 , 2012 .

[117]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[118]  S. Acharya,et al.  Conducting Polymers for Pseudocapacitive Energy Storage , 2016 .

[119]  Y. Meng,et al.  A Symmetric RuO2/RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte , 2012 .

[120]  Jim P. Zheng,et al.  A New Charge Storage Mechanism for Electrochemical Capacitors , 1995 .

[121]  Hao Jiang,et al.  High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires , 2011 .

[122]  Lele Peng,et al.  Nanostructured conductive polymers for advanced energy storage. , 2015, Chemical Society reviews.

[123]  P. Taberna,et al.  On the molecular origin of supercapacitance in nanoporous carbon electrodes. , 2012, Nature materials.

[124]  Jihyun Hong,et al.  Aqueous rechargeable Li and Na ion batteries. , 2014, Chemical reviews.

[125]  G. Chen Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation , 2013 .

[126]  H.Q. Li,et al.  Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance , 2006 .

[127]  Huilin Pan,et al.  Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery , 2012 .

[128]  Xia Zhang,et al.  Investigation of a Branchlike MoO(3)/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. , 2014, ACS applied materials & interfaces.

[129]  B. Conway,et al.  Computer simulation of the kinetic behaviour of surface reactions driven by a linear potential sweep: Part II. Sequential reactions of adsorbed species , 1977 .

[130]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[131]  Juqing Liu,et al.  Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. , 2014, Angewandte Chemie.

[132]  Chunzhong Li,et al.  A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. , 2012, Nanoscale.

[133]  Jianping Gao,et al.  Fabrication of Bi-Fe3O4@RGO hybrids and their catalytic performance for the reduction of 4-nitrophenol , 2015, Journal of Nanoparticle Research.

[134]  A. B. Fuertes,et al.  Superior capacitive performance of hydrochar-based porous carbons in aqueous electrolytes. , 2015, ChemSusChem.

[135]  Brian C. Sales,et al.  Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes , 1996 .

[136]  J. Yoo,et al.  Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor , 2014 .

[137]  H. Angerstein-Kozlowska,et al.  Surface oxidation and H deposition at ruthenium electrodes: Resolution of component processes in potential-sweep experiments , 1975 .

[138]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[139]  P. Taberna,et al.  Electrochemical Kinetic Study of LiFePO4 Using Cavity Microelectrode , 2011 .

[140]  Peixun Xiong,et al.  Pseudo-capacitive performance of titanate nanotubes as a supercapacitor electrode. , 2014, Chemical communications.

[141]  S. Ardizzone,et al.  "Inner" and "outer" active surface of RuO2 electrodes , 1990 .

[142]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[143]  J. Tarascon,et al.  V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. , 2011, Journal of the American Chemical Society.

[144]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[145]  Xiao‐Qing Yang,et al.  High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors. , 2015, ChemSusChem.

[146]  Tianyu Liu,et al.  Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors , 2014 .

[147]  Minho Yang,et al.  High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites , 2015 .

[148]  Itaru Honma,et al.  Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. , 2007, Journal of the American Chemical Society.

[149]  B. Conway,et al.  Evaluation of rate constants and reversibility parameters for surface reactions by the potential-sweep method , 1979 .

[150]  Bruce Dunn,et al.  Deposition of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes , 1997 .

[151]  Xiqian Yu,et al.  A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. , 2013, Nano letters.

[152]  Chi Cheng,et al.  Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage , 2013, Science.

[153]  Chaohe Xu,et al.  Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance , 2011 .

[154]  Hao Jiang,et al.  Polyaniline–MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors , 2012 .

[155]  P. Vishnu Kamath,et al.  Cyclic voltammetric studies of nickel hydroxide and cobalt hydroxide thin films in alkali and alkaline earth metal hydroxides , 1993 .

[156]  W. Sugimoto,et al.  Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. , 2005, The journal of physical chemistry. B.

[157]  Zhongtai Zhang,et al.  Layered Hydrogen Titanate Nanowires with Novel Lithium Intercalation Properties , 2005 .

[158]  B. Conway Two-dimensional and quasi-two-dimensional isotherms for Li intercalation and upd processes at surfaces , 1993 .