Aromatic single-walled organic nanotubes self-assembled from NH-bridged azacalix[2]triptycene[2]pyridine.

A novel triptycene-derived NH-bridged azacalixarene can self-assemble into an aromatic single-walled organic nanotube with large dimensions by four one-dimensional hydrogen bond chains.

[1]  S. Teat,et al.  Metal-organic calixarene nanotubes. , 2010, Angewandte Chemie.

[2]  Chuan-feng Chen,et al.  Triptycene-derived oxacalixarene with expanded cavity: synthesis, structure and its complexation with fullerenes C60 and C70. , 2010, Chemical communications.

[3]  Chuan-feng Chen,et al.  Synthesis, structures, and conformational characteristics of triptycene-derived calix[5]arenes. , 2010, Organic letters.

[4]  Chuan-feng Chen,et al.  Triptycene-derived calix[6]arenes: synthesis, structure and tubular assemblies in the solid state. , 2009, Chemical communications.

[5]  Chuan-feng Chen,et al.  Triptycene-derived N(H)-bridged azacalixarenes: synthesis, structure, and encapsulation of small neutral molecules in the solid state. , 2009, Organic letters.

[6]  S. Dalgarno,et al.  Modulation of nanotube packing through the controlled self-assembly of tris-p-carboxylatocalix[4]arenes. , 2009, Chemical communications.

[7]  C. Didierjean,et al.  Control of duplex formation and columnar self-assembly with heterogeneous amide/urea macrocycles. , 2009, Angewandte Chemie.

[8]  M. Lachkar,et al.  Metal-free synthesis of azacalix[4]arenes , 2008 .

[9]  Chuan-feng Chen,et al.  Triptycene-based tetralactam macrocycles: synthesis, structure and complexation with squaraine. , 2008, Chemical communications.

[10]  Meining Wang Heterocalixaromatics, new generation macrocyclic host molecules in supramolecular chemistry. , 2008, Chemical communications.

[11]  De‐Xian Wang,et al.  Synthesis of large macrocyclic azacalix[n]pyridines (n = 6 - 9) and their complexation with fullerenes C(60) and C(70). , 2008, Organic letters.

[12]  Linda S. Shimizu,et al.  Origins of Selectivity for the [2+2] Cycloaddition of α,β-unsaturated Ketones within a Porous Self-assembled Organic Framework , 2008 .

[13]  A. Rajca,et al.  Synthesis, structure, and conformation of aza[1n]metacyclophanes. , 2008, The Journal of organic chemistry.

[14]  Voltaire G. Organo,et al.  Emerging host-guest chemistry of synthetic nanotubes. , 2007, Chemical communications.

[15]  Chun Zhang,et al.  Triptycene-based expanded oxacalixarenes: synthesis, structure, and tubular assemblies in the solid state. , 2007, The Journal of organic chemistry.

[16]  J. Atwood,et al.  A hydrogen-bonded hexameric nanotoroidal assembly. , 2007, Angewandte Chemie.

[17]  J. Sanders,et al.  Hydrogen-bonded helical organic nanotubes. , 2007, Angewandte Chemie.

[18]  De‐Xian Wang,et al.  Synthesis of tetraazacalix[2]arene[2]triazines: tuning the cavity by the substituents on the bridging nitrogen atoms. , 2006, Organic letters.

[19]  P. Schreiner,et al.  Syntheses and Properties of Enantiomerically Pure Higher (n ≥ 7) [n−2]Triangulanedimethanols and σ‐[n]Helicenes , 2006 .

[20]  A. Lazar,et al.  Helical aquatubes of calix[4]arene di-methoxycarboxylic acid. , 2006, Chemical communications.

[21]  Chuan-Feng Chen,et al.  A triptycene-based bis(crown ether) host: complexation with both paraquat derivatives and dibenzylammonium salts. , 2006, Organic letters.

[22]  Q. Zong,et al.  Novel triptycene-based cylindrical macrotricyclic host: synthesis and complexation with paraquat derivatives. , 2006, Organic letters.

[23]  J. Atwood,et al.  Toward the isolation of functional organic nanotubes. , 2006, Angewandte Chemie.

[24]  Chuan-feng Chen,et al.  A highly efficient approach to [4]pseudocatenanes by threefold metathesis reactions of a triptycene-based tris[2]pseudorotaxane. , 2005, Journal of the American Chemical Society.

[25]  Chuan-feng Chen,et al.  A novel self-assembled organic tubular structure. , 2005, Chemical communications.

[26]  R. Tamura,et al.  Exhaustively methylated azacalix[4]arene: preparation, conformation, and crystal structure with exclusively CH/pi-controlled crystal architecture. , 2005, Organic letters.

[27]  K. Rissanen,et al.  Noncovalent π⋅⋅⋅π‐Stacked Exo‐Functional Nanotubes: Subtle Control of Resorcinarene Self‐Assembly , 2004 .

[28]  Bruno Robert,et al.  Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Sýkora,et al.  Solid State Calix[4]arene Tubular Assemblies Based on Cation–π Interactions , 2003 .

[30]  Takakazu Yamamoto,et al.  Preparation of new type of azacalixarene, azacalix[n](2,6)pyridine , 2002 .

[31]  Kwang Soo Kim,et al.  Self-assembled arrays of organic nanotubes with infinitely long one-dimensional H-bond chains. , 2001, Journal of the American Chemical Society.

[32]  Kwang S. Kim,et al.  Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase , 2001, Science.

[33]  T R Kelly,et al.  Progress toward a rationally designed molecular motor. , 2001, Accounts of chemical research.

[34]  Linda S. Shimizu,et al.  Self-assembly of a bis-urea macrocycle into a columnar nanotube. , 2001, Chemical communications.

[35]  B. König,et al.  Heteroatom‐Bridged Calixarenes , 2000 .

[36]  Kazuyoshi Tanaka,et al.  N-Methyl-Substituted Aza[1(n)()]metacyclophane: Preparation, Structure, and Properties. , 1999, The Journal of organic chemistry.

[37]  L. Barbour,et al.  Controlling molecular self-organization: formation of nanometer-scale spheres and tubules , 1999, Science.

[38]  Ashok S. Shetty,et al.  Aromatic π-Stacking in Solution as Revealed through the Aggregation of Phenylacetylene Macrocycles , 1996 .

[39]  M. Ghadiri,et al.  Artificial transmembrane ion channels from self-assembling peptide nanotubes , 1994, Nature.