Generalized bridging domain method for coupling finite elements with discrete elements

Abstract The concurrent coupling of finite elements and discrete elements is an effective DOF reduction methodology for reproducing the granular flow phenomenon as discrete element method does. In this paper, we present a novel coupling strategy named the generalized bridging domain method. This method introduces independent functions to weight the material properties of the continuum and those of the discrete element model, and then the equilibrium of each new model is guaranteed by imposing compensation forces. The compensation force of continuum is determined by force and displacement compatibility requirements of continuum with respect to discrete elements, and vice versa. Utilizing different weighting functions, four typical coupling methods, the bridging domain method, edge-to-edge coupling, separate domain coupling, and separate edge coupling, are obtained. Additionally, a new integration algorithm with multiple time steps is developed for the separate edge coupling. The numerical performance of the separate domain coupling, where displacement compatibility condition of continuum and that of discrete elements are individually enforced by the Lagrange multiplier method, has been investigated in detail. Results of several numerical examples show that the separate domain coupling outperforms other methods in avoiding spurious reflection and the separate edge coupling is effective enough for coupling finite elements with discrete elements. Due to the truncation of high frequency waves, there exists energy loss but at an acceptable level if the waves can be resolved by the macroscopic finite element model.

[1]  Xikui Li,et al.  A bridging scale method for granular materials with discrete particle assembly – Cosserat continuum modeling , 2011 .

[2]  Pavel B. Bochev,et al.  Connecting Atomistic-to-Continuum Coupling and Domain Decomposition , 2008, Multiscale Model. Simul..

[3]  Mitchell Luskin,et al.  AN ANALYSIS OF THE EFFECT OF GHOST FORCE OSCILLATION ON QUASICONTINUUM ERROR , 2008 .

[4]  Ludovic Chamoin,et al.  Ghost forces and spurious effects in atomic‐to‐continuum coupling methods by the Arlequin approach , 2010 .

[5]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[6]  Ching S. Chang,et al.  Stress-strain relationship for granular materials based on the hypothesis of best fit , 1997 .

[7]  Ted Belytschko,et al.  On the L2 and the H1 couplings for an overlapping domain decomposition method using Lagrange multipliers , 2007 .

[8]  Guillaume Rateau,et al.  The Arlequin method as a flexible engineering design tool , 2005 .

[9]  Ted Belytschko,et al.  A bridging domain and strain computation method for coupled atomistic–continuum modelling of solids , 2007 .

[10]  Martin van Hecke,et al.  Kinematics: Wide shear zones in granular bulk flow , 2003, Nature.

[11]  Julien Réthoré,et al.  A coupled molecular dynamics and extended finite element method for dynamic crack propagation , 2010 .

[12]  Jean H. Prevost,et al.  Frictional slip plane growth by localization detection and the extended finite element method (XFEM) , 2011 .

[13]  Ted Belytschko,et al.  Coarse‐graining of multiscale crack propagation , 2010 .

[14]  Alexander V. Shapeev,et al.  Theory-based benchmarking of the blended force-based quasicontinuum method☆ , 2013, 1304.1368.

[15]  L. Vu-Quoc,et al.  A 3-D discrete-element method for dry granular flows of ellipsoidal particles , 2000 .

[16]  P. Wriggers,et al.  A two-scale model of granular materials , 2012 .

[17]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[18]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[19]  Mitchell Luskin,et al.  Iterative Solution of the Quasicontinuum Equilibrium Equations with Continuation , 2008, J. Sci. Comput..

[20]  Laurent Daudeville,et al.  Multidomain finite and discrete elements method for impact analysis of a concrete structure , 2009 .

[21]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .

[22]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[23]  Y. T. Feng,et al.  A discrete particle model and numerical modeling of the failure modes of granular materials , 2005 .

[24]  P. A. Cundall,et al.  A DISCONTINUOUS FUTURE FOR NUMERICAL MODELLING IN GEOMECHANICS , 2001 .

[25]  Usama El Shamy,et al.  A practical co-simulation approach for multiscale analysis of geotechnical systems , 2010 .

[26]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[27]  S. Nemat-Nasser,et al.  A Micromechanical Description of Granular Material Behavior , 1981 .

[28]  Julien Réthoré,et al.  Energy conservation of atomistic/continuum coupling , 2009 .

[29]  M. Geers,et al.  A quasicontinuum methodology for multiscale analyses of discrete microstructural models , 2011 .

[30]  Harold S. Park,et al.  The bridging scale for two-dimensional atomistic/continuum coupling , 2005 .

[31]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[32]  Mohamed A. Meguid,et al.  An efficient finite–discrete element method for quasi‐static nonlinear soil–structure interaction problems , 2013 .

[33]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .