Generalized bridging domain method for coupling finite elements with discrete elements
暂无分享,去创建一个
Daosheng Ling | Qingda Yang | D. Ling | Qingda Yang | Fubin Tu | Lingfang Bu | Lingfang Bu | F. Tu
[1] Xikui Li,et al. A bridging scale method for granular materials with discrete particle assembly – Cosserat continuum modeling , 2011 .
[2] Pavel B. Bochev,et al. Connecting Atomistic-to-Continuum Coupling and Domain Decomposition , 2008, Multiscale Model. Simul..
[3] Mitchell Luskin,et al. AN ANALYSIS OF THE EFFECT OF GHOST FORCE OSCILLATION ON QUASICONTINUUM ERROR , 2008 .
[4] Ludovic Chamoin,et al. Ghost forces and spurious effects in atomic‐to‐continuum coupling methods by the Arlequin approach , 2010 .
[5] T. Belytschko,et al. A bridging domain method for coupling continua with molecular dynamics , 2004 .
[6] Ching S. Chang,et al. Stress-strain relationship for granular materials based on the hypothesis of best fit , 1997 .
[7] Ted Belytschko,et al. On the L2 and the H1 couplings for an overlapping domain decomposition method using Lagrange multipliers , 2007 .
[8] Guillaume Rateau,et al. The Arlequin method as a flexible engineering design tool , 2005 .
[9] Ted Belytschko,et al. A bridging domain and strain computation method for coupled atomistic–continuum modelling of solids , 2007 .
[10] Martin van Hecke,et al. Kinematics: Wide shear zones in granular bulk flow , 2003, Nature.
[11] Julien Réthoré,et al. A coupled molecular dynamics and extended finite element method for dynamic crack propagation , 2010 .
[12] Jean H. Prevost,et al. Frictional slip plane growth by localization detection and the extended finite element method (XFEM) , 2011 .
[13] Ted Belytschko,et al. Coarse‐graining of multiscale crack propagation , 2010 .
[14] Alexander V. Shapeev,et al. Theory-based benchmarking of the blended force-based quasicontinuum method☆ , 2013, 1304.1368.
[15] L. Vu-Quoc,et al. A 3-D discrete-element method for dry granular flows of ellipsoidal particles , 2000 .
[16] P. Wriggers,et al. A two-scale model of granular materials , 2012 .
[17] M. Ortiz,et al. An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.
[18] J. Q. Broughton,et al. Concurrent coupling of length scales: Methodology and application , 1999 .
[19] Mitchell Luskin,et al. Iterative Solution of the Quasicontinuum Equilibrium Equations with Continuation , 2008, J. Sci. Comput..
[20] Laurent Daudeville,et al. Multidomain finite and discrete elements method for impact analysis of a concrete structure , 2009 .
[21] Ellad B. Tadmor,et al. A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .
[22] Gregory J. Wagner,et al. Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .
[23] Y. T. Feng,et al. A discrete particle model and numerical modeling of the failure modes of granular materials , 2005 .
[24] P. A. Cundall,et al. A DISCONTINUOUS FUTURE FOR NUMERICAL MODELLING IN GEOMECHANICS , 2001 .
[25] Usama El Shamy,et al. A practical co-simulation approach for multiscale analysis of geotechnical systems , 2010 .
[26] P. Cundall,et al. A discrete numerical model for granular assemblies , 1979 .
[27] S. Nemat-Nasser,et al. A Micromechanical Description of Granular Material Behavior , 1981 .
[28] Julien Réthoré,et al. Energy conservation of atomistic/continuum coupling , 2009 .
[29] M. Geers,et al. A quasicontinuum methodology for multiscale analyses of discrete microstructural models , 2011 .
[30] Harold S. Park,et al. The bridging scale for two-dimensional atomistic/continuum coupling , 2005 .
[31] M. Ortiz,et al. Quasicontinuum analysis of defects in solids , 1996 .
[32] Mohamed A. Meguid,et al. An efficient finite–discrete element method for quasi‐static nonlinear soil–structure interaction problems , 2013 .
[33] Noam Bernstein,et al. Spanning the length scales in dynamic simulation , 1998 .