Robust state-feedback control of uncertain LPV systems: An LMI-based approach

Abstract In this paper, the problem of designing an LPV state-feedback controller for uncertain LPV systems that can guarantee some desired bounds on the H ∞ and the H 2 performances and that satisfies some desired constraints on the closed-loop poles location is considered. In the proposed approach, the vector of varying parameters is used to schedule between uncertain LTI systems. The resulting idea consists in using a double-layer polytopic description so as to take into account both the variability due to the parameter vector and the uncertainty. The first polytopic layer manages the varying parameter and is used to obtain the vertex uncertain systems, where the vertex controllers are designed. The second polytopic layer is built at each vertex system so as to take into account the model uncertainties and add robustness into the design step. Under some assumptions, the problem reduces to finding a solution to a finite number of LMIs, a problem for which efficient solvers are available nowadays. The solution to the multiobjective design problem is found both in the case when a single fixed Lyapunov function is used and when multiple parameter-varying Lyapunov functions are used. The validity and performance of the theoretical results are demonstrated through a numerical example.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  Gary J. Balas,et al.  Linear, parameter‐varying control and its application to a turbofan engine , 2002 .

[3]  Y Ebihara,et al.  Gain-Scheduled state-feedback controllers using inexactly measured scheduling parameters: H2 and H∞ problems , 2010, Proceedings of the 2010 American Control Conference.

[4]  Masayuki Sato Gain-Scheduled output-feedback controllers using inexactly measured scheduling parameters , 2010, 49th IEEE Conference on Decision and Control (CDC).

[5]  James F. Whidborne,et al.  Gain-scheduled H∞ control via parameter-dependent Lyapunov functions , 2015, Int. J. Syst. Sci..

[6]  Ricardo Salvador Sánchez Peña,et al.  LPV control of a 6-DOF vehicle , 2002, IEEE Trans. Control. Syst. Technol..

[7]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[8]  Michel Verhaegen,et al.  Identification of linear parameter-varying state-space models with application to helicopter rotor dynamics , 2004 .

[9]  Alexandre Trofino,et al.  Parametric Lyapunov function approach to H/sub 2/ analysis and control of linear parameter-dependent systems , 2003 .

[10]  C. de Souza,et al.  Gain‐scheduled ℋ︁2 controller synthesis for linear parameter varying systems via parameter‐dependent Lyapunov functions , 2006 .

[11]  Ali Abdullah,et al.  Model reference control of LPV systems , 2009, J. Frankl. Inst..

[12]  Guanghui Sun,et al.  Induced L2 norm control for LPV system with specified class of disturbance inputs , 2013, J. Frankl. Inst..

[13]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[14]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[15]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[16]  Pascal Gahinet,et al.  H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[17]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[18]  Masayuki Sato Discrete-time Gain-Scheduled Output-Feedback controllers exploiting inexact scheduling parameters , 2011, 2011 IEEE International Symposium on Computer-Aided Control System Design (CACSD).

[19]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[20]  Péter Gáspár,et al.  Active suspension design using linear parameter varying control , 2003 .

[21]  J. Daafouz,et al.  Parameter-dependent state observer design for affine LPV systems , 2001 .

[22]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[23]  Javad Mohammadpour,et al.  Control of linear parameter varying systems with applications , 2012 .

[24]  Gary J. Balas,et al.  LPV control design for pitch-axis missile autopilots , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[25]  Faryar Jabbari,et al.  Control of LPV systems with partly measured parameters , 1999, IEEE Trans. Autom. Control..

[26]  J. Geromel,et al.  Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .

[27]  Okko H. Bosgra,et al.  LPV control for a wafer stage: beyond the theoretical solution , 2005 .

[28]  I. Polat,et al.  Dynamic output feedback control of quasi-LPV mechanical systems , 2007 .

[29]  Yoshio Ebihara LMI-based multiobjective controller design with non-common Lyapunov variables , 2002 .

[30]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[31]  J. Geromel,et al.  An LMI optimization approach to multiobjective controller design for discrete-time systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[32]  J. Bernussou,et al.  On Inexact LPV Control Design of Continuous–Time Polytopic Systems , 2008, IEEE Transactions on Automatic Control.

[33]  W. Xie H2 gain scheduled state feedback for LPV system with new LMI formulation , 2005 .

[34]  Fernando D. Bianchi,et al.  Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models , 2005 .

[35]  Pierre Apkarian,et al.  Missile autopilot design via a modified LPV synthesis technique , 1999 .

[36]  Jeff S. Shamma,et al.  An Overview of LPV Systems , 2012 .

[37]  Karolos M. Grigoriadis,et al.  Mean-square optimal control of Linear Parameter Varying systems with noisy scheduling parameter measurements , 2013, 2013 American Control Conference.

[38]  Peng-Yung Woo,et al.  Gain Scheduled LPV H∞ Control Based on LMI Approach for a Robotic Manipulator , 2002, J. Field Robotics.

[39]  Jeff S. Shamma,et al.  Analysis and design of gain scheduled control systems , 1988 .

[40]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[41]  Damiano Rotondo,et al.  Quasi-LPV modeling, identification and control of a twin rotor MIMO system , 2013 .

[42]  Mario Sznaier Receding horizon: an easy way to improve performance in LPV systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[43]  Ricardo C. L. F. Oliveira,et al.  LMI approach for H linear parameter-varying state feedback control , 2005 .

[44]  ApkarianPierre,et al.  Self-scheduled H control of linear parameter-varying systems , 1995 .

[45]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[46]  Pierre Apkarian,et al.  MISSILE AUTOPILOT DESIGN VIA A MULTI-CHANNEL LFT/LPV CONTROL METHOD , 2002 .

[47]  Herbert Werner,et al.  LPV observer design and damping control of container crane load swing , 2013, 2013 European Control Conference (ECC).

[48]  Masayuki Sato,et al.  Gain-scheduled output-feedback controllers using inexact scheduling parameters for continuous-time LPV systems , 2013, Autom..

[49]  Jeff S. Shamma Analysis and design of gain scheduled control systems. Ph.D. Thesis , 1988 .

[50]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[51]  Péter Gáspár,et al.  Robust Control and Linear Parameter Varying approaches: Application to Vehicle Dynamics , 2013 .