Semiconductor technology choices for ultrawide-band (UWB) systems

UWB 3.1-10.6 GHz frequency and bandwidth impose stringent performance demands of technology. The standard specifications, system architecture, frequency planning, and circuit topology have a major influence on the technology choice. Two technology choices are RFCMOS and SiGe BiCMOS. RFCMOS strongly increases speed and density with scaling, but analog parameters and layout are a concern. RFCMOS designs also require additional devices, sophisticated models and design kits over digital CMOS. SiGe HBTS have fewer device design tradeoffs due to bandgap-engineered vertical transport. Initial systems are system in a package. The low cost favors CMOS.

[1]  G. Gildenblat,et al.  SP: an advanced surface-potential-based compact MOSFET model , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[2]  John D. Cressler,et al.  RF linearity characteristics of SiGe HBTs , 2001 .

[3]  T. Ohguro,et al.  Future perspective and scaling down roadmap for RF CMOS , 1999, 1999 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.99CH36325).

[4]  M. Breitwisch,et al.  High-performance logic and high-gain analog CMOS transistors formed by a shadow-mask technique with a single implant step , 2002 .

[5]  R. Gharpurey,et al.  Design challenges in emerging broadband wireless systems , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[6]  M. Erturk,et al.  RF FET layout and modeling for design success in RFCMOS technologies , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[7]  T. Adam,et al.  SiGe HBT technology with f/sub max//f/sub T/=350/300 GHz and gate delay below 3.3 ps , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[8]  Xudong Wang,et al.  Meeting the design challenges in modern RFCMOS technology , 2004, Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004..

[9]  D. Leenaerts,et al.  A SiGe BiCMOS 1ns fast hopping frequency synthesizer for UWB radio , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[10]  K. Siwiak,et al.  Ultra-wide band radio: the emergence of an important new technology , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[11]  C. Hu,et al.  Advanced Compact Models for MOSFETs , 2005 .

[12]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[13]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[14]  Theodore S. Rappaport,et al.  The evolution of ultra wide band radio for wireless personal area networks , 2003 .

[15]  B. Jagannathan,et al.  Device scaling and application trends for over 200GHz SiGe HBTs , 2003, 2003 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2003. Digest of Papers..

[16]  M. Shur,et al.  Unified charge control model and subthreshold current in heterostructure field-effect transistors , 1990, IEEE Electron Device Letters.

[17]  B. Razavi,et al.  A 0.13 /spl mu/m CMOS UWB transceiver , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[18]  S. Jeng,et al.  SiGe HBTs with cut-off frequency of 350 GHz , 2002, Digest. International Electron Devices Meeting,.

[19]  Chorng-Kuang Wang,et al.  A regenerative semi-dynamic frequency divider for mode-1 MB-OFDM UWB hopping carrier generation , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[20]  Huei Wang,et al.  A 5.4-mW LNA using 0.35- /spl mu/m SiGe BiCMOS technology for 3.1-10.6-GHz UWB wireless receivers , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[21]  Alvin J. Joseph,et al.  Limitations of CMOS scaling : What's next? , 2005 .

[22]  Lawrence E. Larson,et al.  Silicon technology tradeoffs for radio-frequency/mixed-signal (quote)systems-on-a-chip(quote) , 2003 .

[23]  Hailing Wang,et al.  A robust large signal non-quasi-static MOSFET model for circuit simulation , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[24]  E. Vittoz,et al.  An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications , 1995 .

[25]  Jri Lee,et al.  11.3 A 7-Band 3-8GHz Frequency Synthesizer , 2005 .

[26]  G. Gildenblat,et al.  Introduction to PSP MOSFET Model , 2005 .

[27]  Marcel J. M. Pelgrom,et al.  Transistor matching in analog CMOS applications , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[28]  Carlos Galup-Montoro,et al.  An explicit physical model for the long-channel MOS transistor including small-signal parameters , 1995 .

[29]  B. Jagannathan,et al.  Enabling RFCMOS solutions for emerging advanced applications , 2005, European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005.

[30]  H.S. Bennett,et al.  Device and technology evolution for Si-based RF integrated circuits , 2005, IEEE Transactions on Electron Devices.

[31]  V. Srinivasa Somayazulu,et al.  Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity , 2004, Proceedings of the IEEE.

[32]  Carlos Galup-Montoro,et al.  Consistent model for drain current mismatch in MOSFETs using the carrier number fluctuation theory , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[33]  A. Ismail,et al.  A 3.1 to 8.2 GHz direct conversion receiver for MB-OFDM UWB communications , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[34]  A. Kasamatsu,et al.  Low noise amplifier with center frequency hopping for an MB-OFDM UWB receiver , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).