Emergence of novel tigecycline resistance gene tet(X5) variant in multidrug-resistant Acinetobacter indicus of swine farming environments.

[1]  Y. Hutin,et al.  Increasing Antimicrobial Resistance in World Health Organization Eastern Mediterranean Region, 2017–2019 , 2022, Emerging infectious diseases.

[2]  Yuan Liu,et al.  Comprehensive Genomic Investigation of Tigecycline Resistance Gene tet(X4)-Bearing Strains Expanding among Different Settings , 2021, Microbiology spectrum.

[3]  Carl-Fredrik Flach,et al.  Antibiotic resistance in the environment , 2021, Nature Reviews Microbiology.

[4]  A. Munir,et al.  Emergence of Plasmid-Mediated Resistance Genes tet(X) and mcr-1 in Escherichia coli Clinical Isolates from Pakistan , 2021, mSphere.

[5]  Zhiqiang Wang,et al.  Characterization of novel ISAba1-bounded tet(X15)-bearing composite transposon Tn6866 in Acinetobacter variabilis. , 2021, The Journal of antimicrobial chemotherapy.

[6]  Biao Tang,et al.  Coexistence and characterization of Tet(X5) and NDM-3 in the MDR-Acinetobacter indicus of duck origin. , 2020, Microbial pathogenesis.

[7]  Jian Sun,et al.  Spread of tet(X5) and tet(X6) genes in multidrug-resistant Acinetobacter baumannii strains of animal origin. , 2020, Veterinary microbiology.

[8]  Jian Sun,et al.  Genetic diversity and characteristics of high-level tigecycline resistance Tet(X) in Acinetobacter species , 2020, Genome Medicine.

[9]  Jian Sun,et al.  A novel plasmid-borne tet(X6) variant co-existing with blaNDM-1 and blaOXA-58 in a chicken Acinetobacter baumannii isolate. , 2020, The Journal of antimicrobial chemotherapy.

[10]  C. Nathan Resisting antimicrobial resistance , 2020, Nature Reviews Microbiology.

[11]  Jian Sun,et al.  Co-occurrence of Plasmid-Mediated Tigecycline and Carbapenem Resistance in Acinetobacter spp. from Waterfowls and Their Neighboring Environment , 2020, Antimicrobial Agents and Chemotherapy.

[12]  Z. Zong,et al.  Identification of novel mobile colistin resistance gene mcr-10 , 2020, Emerging microbes & infections.

[13]  Jianzhong Shen,et al.  Novel Plasmid-Mediated tet(X5) Gene Conferring Resistance to Tigecycline, Eravacycline, and Omadacycline in a Clinical Acinetobacter baumannii Isolate , 2019, Antimicrobial Agents and Chemotherapy.

[14]  F. Baquero,et al.  Defining and combating antibiotic resistance from One Health and Global Health perspectives , 2019, Nature Microbiology.

[15]  Jianzhong Shen,et al.  Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans , 2019, Nature Microbiology.

[16]  Jian Sun,et al.  Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli , 2019, Nature Microbiology.

[17]  M. Wiedmann,et al.  Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate , 2019, mBio.

[18]  Yang Wang,et al.  Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae , 2018, Emerging Microbes & Infections.

[19]  J. Rodríguez-Baño,et al.  Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae , 2018, Clinical Microbiology Reviews.

[20]  Z. Iqbal,et al.  The global distribution and spread of the mobilized colistin resistance gene mcr-1 , 2017, bioRxiv.

[21]  M. El-Gamal,et al.  Recent updates of carbapenem antibiotics. , 2017, European journal of medicinal chemistry.

[22]  Ryan R. Wick,et al.  Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads , 2016, bioRxiv.

[23]  D. Sridhar,et al.  Achieving global targets for antimicrobial resistance , 2016, Science.

[24]  Stefan Schwarz,et al.  Resistance gene naming and numbering: is it a new gene or not? , 2016, The Journal of antimicrobial chemotherapy.

[25]  Jianzhong Shen,et al.  Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. , 2015, The Lancet. Infectious diseases.

[26]  Marius Gilbert,et al.  Global trends in antimicrobial use in food animals , 2015, Proceedings of the National Academy of Sciences.

[27]  A. Evans,et al.  Favourable outcome in the treatment of carbapenem-resistant Enterobacteriaceae urinary tract infection with high-dose tigecycline. , 2014, The Journal of antimicrobial chemotherapy.

[28]  A. Haidich,et al.  Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. , 2011, The Lancet. Infectious diseases.

[29]  Robert A. Bonomo,et al.  Carbapenems: Past, Present, and Future , 2011, Antimicrobial Agents and Chemotherapy.

[30]  Mitchell J. Sullivan,et al.  Easyfig: a genome comparison visualizer , 2011, Bioinform..

[31]  M. Falagas,et al.  Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. , 2008, The Lancet. Infectious diseases.

[32]  D. Guiney,et al.  Expression in Escherichia coli of cryptic tetracycline resistance genes from bacteroides R plasmids. , 1984, Plasmid.

[33]  J. Karlowsky,et al.  Comparative Review of the Carbapenems , 2012, Drugs.

[34]  M. Berriman,et al.  DNAPlotter: circular and linear interactive genome visualization , 2008, Bioinform..