Binary Ant Colony Optimization for Subset Problems

Many optimization problems involve selecting the best subset of solution components. Besides, many other optimization problems can be modelled as a subset problem. This chapter focuses on developing a new framework in ant colony optimization (ACO) for optimization problems that require selection rather than ordering with an application to feature selection for regression problems as a representative for subset problems. This is addressed through three steps that are: explaining the main guidelines of developing an ant algorithm, demonstrating different solution representations for subset problems using ACO algorithms, and proposing a binary ant algorithm for feature selection for regression problems.

[1]  Shaogang Gong,et al.  Dynamic Vision - From Images to Face Recognition , 2000 .

[2]  Ian Witten,et al.  Data Mining , 2000 .

[3]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[4]  Edward R. Dougherty,et al.  Feature selection algorithms to find strong genes , 2005, Pattern Recognit. Lett..

[5]  D. Agrafiotis,et al.  Variable selection for QSAR by artificial ant colony systems , 2002, SAR and QSAR in environmental research.

[6]  Andreas D. Baxevanis,et al.  Bioinformatics - a practical guide to the analysis of genes and proteins , 2001, Methods of biochemical analysis.

[7]  Thomas Serre,et al.  Feature Selection for Face Detection , 2000 .

[8]  Michael J. A. Berry,et al.  Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management , 2004 .

[9]  G. Theraulaz,et al.  Inspiration for optimization from social insect behaviour , 2000, Nature.

[10]  M. Indra Devi,et al.  Feature Selection for Web Page Classification , 2009 .

[11]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[12]  Nong Ye,et al.  The Handbook of Data Mining , 2003 .

[13]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[14]  Jafar Tanha,et al.  Combination of Ant Colony Optimization and Bayesian Classification for Feature Selection in a Bioinformatics Dataset , 2009, Journal of Computer Science & Systems Biology.

[15]  Witold Pedrycz,et al.  Data Mining Methods for Knowledge Discovery , 1998, IEEE Trans. Neural Networks.

[16]  Z. Michalewicz,et al.  A new version of ant system for subset problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[17]  Akash Khandelwal,et al.  In silico ADME modelling 2: computational models to predict human serum albumin binding affinity using ant colony systems. , 2006, Bioorganic & medicinal chemistry.

[18]  S. Durbha,et al.  Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer , 2007 .

[19]  Jihoon Yang,et al.  Experimental Comparison of Feature Subset Selection Using GA and ACO Algorithm , 2006, ADMA.

[20]  Jian-Hui Jiang,et al.  Modified Ant Colony Optimization Algorithm for Variable Selection in QSAR Modeling: QSAR Studies of Cyclooxygenase Inhibitors , 2005, J. Chem. Inf. Model..

[21]  Bing Liu,et al.  Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data , 2006, Data-Centric Systems and Applications.

[22]  Marcus Randall,et al.  Investigating the Effect of Fixing the Subset Length Using Ant Colony Optimization Algorithms for Feature Subset Selection Problems , 2012, 2012 13th International Conference on Parallel and Distributed Computing, Applications and Technologies.

[23]  T. Stützle,et al.  A Review on the Ant Colony Optimization Metaheuristic: Basis, Models and New Trends , 2002 .

[24]  Ee-Peng Lim,et al.  Web classification using support vector machine , 2002, WIDM '02.

[25]  Theodore B. Trafalis,et al.  Support vector machine for regression and applications to financial forecasting , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[26]  Arthur M. Lesk,et al.  Introduction to bioinformatics , 2002 .

[27]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[28]  Thomas A. Runkler,et al.  Two cooperative ant colonies for feature selection using fuzzy models , 2010, Expert Syst. Appl..

[29]  Paul F. Whelan,et al.  Machine Vision Algorithms in Java: Techniques and Implementation , 2000 .

[30]  Johannes Gehrke,et al.  Data Mining with Decision Trees , 2000, ICDE.

[31]  Maneesha Singh,et al.  Pattern Recognition and Data Mining, Third International Conference on Advances in Pattern Recognition, ICAPR 2005, Bath, UK, August 22-25, 2005, Proceedings, Part I , 2005, International Conference on Advances in Pattern Recognition.

[32]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[33]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[34]  Lipo Wang,et al.  Data Mining With Computational Intelligence , 2006, IEEE Transactions on Neural Networks.

[35]  Bahram Hemmateenejad,et al.  An efficient variable selection method based on the use of external memory in ant colony optimization. Application to QSAR/QSPR studies. , 2009, Analytica chimica acta.

[36]  S. Lippman,et al.  The Scripps Institution of Oceanography , 1959, Nature.

[37]  Patrick M. Pilarski,et al.  A SWARM-BASED SYSTEM FOR OBJECT RECOGNITION , 2005 .

[38]  Hiroshi Motoda,et al.  Feature Selection for Knowledge Discovery and Data Mining , 1998, The Springer International Series in Engineering and Computer Science.

[39]  Bahram Hemmateenejad,et al.  Ant colony optimisation: a powerful tool for wavelength selection , 2006 .

[40]  Marcus Randall,et al.  Automated Selection of Appropriate Pheromone Representations in Ant Colony Optimization , 2005, Artificial Life.

[41]  Ebroul Izquierdo,et al.  Image classification using biologically inspired systems , 2006, MobiMedia '06.

[42]  Sholom M. Weiss,et al.  Predictive data mining - a practical guide , 1997 .

[43]  Stephen R. Marsland,et al.  Machine Learning - An Algorithmic Perspective , 2009, Chapman and Hall / CRC machine learning and pattern recognition series.

[44]  Duy-Dinh Le,et al.  An Efficient Feature Selection Method for Object Detection , 2005, ICAPR.

[45]  Jan M. Zytkow,et al.  Handbook of Data Mining and Knowledge Discovery , 2002 .

[46]  Rafael Bello,et al.  A model based on ant colony system and rough set theory to feature selection , 2005, GECCO '05.

[47]  Mehmet Fatih Amasyali,et al.  A comparative review of regression ensembles on drug design datasets , 2013, Turkish Journal of Electrical Engineering and Computer Sciences.

[48]  Vittorio Maniezzo,et al.  An Ant-Based Framework for Very Strongly Constrained Problems , 2002, Ant Algorithms.

[49]  Thomas W. Miller Data and Text Mining: A Business Applications Approach , 2004 .

[50]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[51]  S Kanmani,et al.  Artificial Bee Colony Approach for Approach for Approach for Approach for Optimizing Feature Selection , 2012 .

[52]  Arun Ross,et al.  Handbook of Biometrics , 2007 .

[53]  Paul F. Whelan,et al.  Machine Vision Algorithms in Java , 2001 .

[54]  Christine Solnon,et al.  An Ant Colony Optimization Meta-Heuristic for Subset Selection Problems , 2006 .

[55]  Houkuan Huang,et al.  Feature selection for text classification with Naïve Bayes , 2009, Expert Syst. Appl..

[56]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[57]  Figen Ertaş,et al.  FEATURE SELECTION AND CLASSIFICATION TECHNIQUES FOR SPEAKER RECOGNITION , 2001 .