Quantum limits on noise for a class of nonlinear amplifiers

Nonlinear amplifiers such as the transistor are ubiquitous in classical technology, but their quantum analogues are not well understood. We introduce a class of nonlinear amplifiers that amplify any normal operator and add only a half-quantum of vacuum noise at the output. In the large-gain limit, when used in conjunction with a noisy linear detectors, these amplifiers implement ideal measurements of the normal operator.

[1]  A. Furusawa,et al.  Nonlinear Squeezing for Measurement-Based Non-Gaussian Operations in Time Domain , 2020, Physical Review Applied.

[2]  Z. Jacob,et al.  Single-photon pulse induced giant response in N > 100 qubit system , 2020, npj Quantum Information.

[3]  J. Aumentado Superconducting Parametric Amplifiers: The State of the Art in Josephson Parametric Amplifiers , 2020, IEEE Microwave Magazine.

[4]  Heisenberg picture of photodetection , 2020, 2007.05444.

[5]  S. Deleglise,et al.  Irreversible Qubit-Photon Coupling for the Detection of Itinerant Microwave Photons , 2020, Physical Review X.

[6]  A. Blais,et al.  Quantum metamaterial for nondestructive microwave photon counting. , 2020, 2005.06483.

[7]  C. Caves Reframing SU(1,1) Interferometry , 2019, Advanced Quantum Technologies.

[8]  M. Hatridge,et al.  Optimizing Josephson-ring-modulator-based Josephson parametric amplifiers via full Hamiltonian control , 2019, Physical Review A.

[9]  A. Wade,et al.  Phase-sensitive optomechanical amplifier for quantum noise reduction in laser interferometers , 2019, 1909.02264.

[10]  Liang Jiang,et al.  Encoding an Oscillator into Many Oscillators. , 2019, Physical review letters.

[11]  Ben Q. Baragiola,et al.  Quantum Computing with Rotation-Symmetric Bosonic Codes , 2019, Physical Review X.

[12]  R. Filip,et al.  Squeezing-enhanced quantum key distribution over atmospheric channels , 2018, New Journal of Physics.

[13]  Jacob M. Taylor,et al.  Figures of merit for quantum transducers , 2016, Quantum Science and Technology.

[14]  M. Devoret,et al.  Kerr-Free Three-Wave Mixing in Superconducting Quantum Circuits , 2019, Physical Review Applied.

[15]  Aashish A. Clerk,et al.  High-fidelity bosonic quantum state transfer using imperfect transducers and interference , 2018, npj Quantum Information.

[16]  J. Ikonen,et al.  Qubit Measurement by Multichannel Driving. , 2018, Physical review letters.

[17]  L Frunzio,et al.  Gated Conditional Displacement Readout of Superconducting Qubits. , 2018, Physical review letters.

[18]  M. Brunelli,et al.  Linear and quadratic reservoir engineering of non-Gaussian states , 2018, Physical Review A.

[19]  S. J. van Enk,et al.  On nonlinear amplification: improved quantum limits for photon counting. , 2018, Optics express.

[20]  S. Young,et al.  General modeling framework for quantum photodetectors , 2018, Physical Review A.

[21]  C. Howington,et al.  Measurement of a superconducting qubit with a microwave photon counter , 2018, Science.

[22]  John von Neumann,et al.  Mathematical Foundations of Quantum Mechanics: New Edition , 2018 .

[23]  B. Roberts,et al.  Observables, disassembled , 2016, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics.

[24]  R. McDermott,et al.  Optimizing microwave photodetection: input–output theory , 2016, 1609.08887.

[25]  Ulrik L. Andersen,et al.  Complete elimination of information leakage in continuous-variable quantum communication channels , 2014, npj Quantum Information.

[26]  A. Wallraff,et al.  Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons , 2017, 1711.11569.

[27]  K. Koshino,et al.  Quantum non-demolition detection of an itinerant microwave photon , 2017, 1711.05479.

[28]  F. Khalili,et al.  Quantum tomography enhanced through parametric amplification , 2017, 1708.03820.

[29]  A. Blais,et al.  Effect of higher-order nonlinearities on amplification and squeezing in Josephson parametric amplifiers , 2017, 1708.00020.

[30]  M. Sillanpää,et al.  Noiseless Quantum Measurement and Squeezing of Microwave Fields Utilizing Mechanical Vibrations. , 2016, Physical review letters.

[31]  Jeremy B. Clark,et al.  Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator , 2016, Nature Physics.

[32]  A. Fedorov,et al.  Higher-order nonlinear effects in a Josephson parametric amplifier , 2015, 1509.06154.

[33]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[34]  Alexandre Blais,et al.  Fast Quantum Nondemolition Readout by Parametric Modulation of Longitudinal Qubit-Oscillator Interaction. , 2015, Physical review letters.

[35]  R. McDermott,et al.  High-fidelity qubit measurement with a microwave-photon counter , 2014, 1502.01564.

[36]  C. Wilson,et al.  Characterization of a multimode coplanar waveguide parametric amplifier , 2014, 1409.8160.

[37]  Thomas M. Stace,et al.  Nonabsorbing high-efficiency counter for itinerant microwave photons , 2014, 1403.4465.

[38]  A. Duncan,et al.  (Never) Mind your p’s and q’s: Von Neumann versus Jordan on the foundations of quantum theory , 2012, 1204.6511.

[39]  H. V. Trees,et al.  Part I. Detection, Estimation, and Linear Modulation Theory , 2013 .

[40]  C. Caves,et al.  Quantum limits on phase-preserving linear amplifiers , 2012, 1208.5174.

[41]  Hideo Mabuchi,et al.  Nonlinear interferometry approach to photonic sequential logic , 2011, 1108.1594.

[42]  John Clarke,et al.  Superconducting quantum interference device as a near-quantum-limited amplifier for the axion dark-matter experiment , 2011 .

[43]  Hideo Mabuchi,et al.  Coherent-feedback control strategy to suppress spontaneous switching in ultralow power optical bistability , 2011, 1101.3461.

[44]  A. Clerk,et al.  Quantum-limited amplification with a nonlinear cavity detector , 2010, 1011.5938.

[45]  G. D’Ariano,et al.  Purification of noisy quantum measurements , 2010, 1009.3127.

[46]  S. Filipp,et al.  Measurements of the Correlation Function of a Microwave Frequency Single Photon Source , 2010, 1002.3738.

[47]  R. J. Schoelkopf,et al.  Phase-preserving amplification near the quantum limit with a Josephson ring modulator , 2009, Nature.

[48]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[49]  J. Teufel,et al.  Nanomechanical motion measured with an imprecision below that at the standard quantum limit. , 2009, Nature nanotechnology.

[50]  M. Mariantoni,et al.  Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect , 2009 .

[51]  Yasunobu Nakamura,et al.  Flux-driven Josephson parametric amplifier , 2008, 0808.1386.

[52]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[53]  F. Illuminati,et al.  Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states , 2003, quant-ph/0308081.

[54]  Ying Wu,et al.  Quadrature-dependent Bogoliubov transformations and multiphoton squeezed states , 2002 .

[55]  F. Illuminati,et al.  Quadrature-dependent Bogoliubov transformations and multiphoton squeezed states , 2001, quant-ph/0105070.

[56]  Xiaoguang Wang Continuous-variable and hybrid quantum gates , 2001, quant-ph/0104069.

[57]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[58]  G. D’Ariano,et al.  ON THE CORRESPONDENCE BETWEEN CLASSICAL AND QUANTUM MEASUREMENTS ON A BOSONIC FIELD , 1999, quant-ph/9907057.

[59]  D. Rohrlich,et al.  Noise of a Nonlinear Quantum Amplifier , 1996 .

[60]  R. Ortega-Martínez,et al.  The Cummings-Tavis model as a nonlinear quantum amplifier , 1995 .

[61]  Sasaki,et al.  Physical aspect of the improvement of quantum-noise characteristics caused by unitary transformation with a nonlinear optical medium. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[62]  Kouznetsov,et al.  Quantum noise limits for nonlinear, phase-invariant amplifiers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[63]  Dmitri Kouznetsov Kallistratova,et al.  How to characterize the nonlinear amplifier , 1994 .

[64]  Collett,et al.  Quantum-nondemolition measurement of photon number using radiation pressure. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[65]  S. Ho,et al.  Scheme for realizing a photon number amplifier. , 1994, Optics letters.

[66]  Bondurant Quantum noise properties of a nonlinear amplifier. , 1993, Physical review letters.

[67]  D'Ariano Hamiltonians for the photon-number-phase amplifiers. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[68]  Bernard Yurke,et al.  Observation of 4.2-K equilibrium-noise squeezing via a Josephson-parametric amplifier. , 1988, Physical review letters.

[69]  Yamamoto,et al.  Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer. , 1986, Physical review. A, General physics.

[70]  Yuen,et al.  Generation, detection, and application of high-intensity photon number eigenstate fields. , 1986, Physical review letters.

[71]  Horace P. Yuen,et al.  Amplification of quantum states and noiseless photon amplifiers , 1986 .

[72]  Schumaker,et al.  New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. , 1985, Physical review. A, General physics.

[73]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[74]  Chi-Hau Chen Signal-to-noise ratios in logarithmic amplifiers , 1969 .

[75]  S. Bernau THE SPECTRAL THEOREM FOR UNBOUNDED NORMAL OPERATORS , 1966 .

[76]  J. L. Kelly,et al.  B.S.T.J. briefs: On the simultaneous measurement of a pair of conjugate observables , 1965 .

[77]  S. Bernau The Spectral Theorem for Normal Operators , 1965 .

[78]  H. Haus,et al.  QUANTUM NOISE IN LINEAR AMPLIFIERS , 1962 .