Star formation history up to z = 7.4: implications for gamma-ray bursts and cosmic metallicity evolution
暂无分享,去创建一个
[1] Jorick S. Vink,et al. On the metallicity dependence of Wolf-Rayet winds , 2005 .
[2] S. Okamura,et al. Subaru Deep Survey VI. A Census of Lyman Break Galaxies at z=4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.
[3] Christian Wolf,et al. The metallicity dependence of the long-duration gamma-ray burst rate from host galaxy luminosities , 2007 .
[4] The mass function of the stellar component of galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0406299.
[5] Boulder,et al. The redshift distribution of Swift gamma‐ray bursts: evidence for evolution , 2006, astro-ph/0607618.
[6] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[7] Helmut Jerjen,et al. Galaxies in the local volume , 2008 .
[8] P. Meszaros. Gamma-ray bursts , 1998 .
[9] E. Salpeter. The Luminosity function and stellar evolution , 1955 .
[10] P. Crowther,et al. Physical Properties of Wolf-Rayet Stars , 2006, astro-ph/0610356.
[11] Donald Q. Lamb,et al. Gamma-Ray Bursts as a Probe of the Very High Redshift Universe , 2000 .
[12] Cambridge,et al. The star formation rate of the Universe at z~ 6 from the Hubble Ultra-Deep Field , 2004, astro-ph/0403223.
[13] L. Dessart,et al. Stellar and wind properties of LMC WC4 stars A metallicity dependence for Wolf-Rayet mass-loss rates ? , 2002, astro-ph/0206233.
[14] The Rest-Frame Ultraviolet Luminosity Density of Star-forming Galaxies at Redshifts z > 3.5 , 2003, astro-ph/0309065.
[15] L. Kewley,et al. Metallicity of Star-Forming Galaxies , 2005 .
[16] Tucson,et al. Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.
[17] S. Djorgovski,et al. The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999 , 1999, Nature.
[18] R. Ellis,et al. The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.
[19] L. Kewley,et al. THE METALLICITY HISTORY OF DISK GALAXIES , 2007 .
[20] D. Fugazza,et al. An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova , 2006, Nature.
[21] S. E. Nuza,et al. The host galaxies of long-duration gamma-ray bursts in a cosmological hierarchical scenario , 2006, astro-ph/0611122.
[22] J. Bloom,et al. Toward a More Standardized Candle Using Gamma-Ray Burst Energetics and Spectra , 2004, astro-ph/0408413.
[23] Kevin C. Hurley,et al. The Host Galaxy of GRB 031203: Implications of Its Low Metallicity, Low Redshift, and Starburst Nature , 2004, astro-ph/0402085.
[24] Volker Springel,et al. Star formation rate and metallicity of damped Lyman α absorbers in cosmological smoothed particle hydrodynamics simulations , 2003, astro-ph/0305409.
[25] G. Helou,et al. The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z ~ 2 in the GOODS Fields , 2007, astro-ph/0701283.
[26] A. J. Levan,et al. Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.
[27] R. McMahon,et al. Near-infrared properties of i-drop galaxies in the Hubble Ultra Deep Field , 2004, astro-ph/0403585.
[28] The gamma-ray burst luminosity function in the light of the Swift 2 year data , 2006, astro-ph/0612278.
[29] An observational limit on the earliest gamma-ray bursts , 2007, astro-ph/0702357.
[30] L.Armus,et al. Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 PROBING THE COSMIC STAR FORMATION USING LONG GAMMA-RAY BURSTS: NEW CONSTRAINTS FROM THE SPITZER SPACE TELESCOPE ∗ , 2006 .
[31] A. S. Fruchter,et al. Gamma-Ray Burst-Selected High-Redshift Galaxies: Comparison to Field Galaxy Populations to z ~ 3 , 2005, astro-ph/0508197.
[32] Y. Yoshii,et al. Cosmological Implications of the Very High Redshift GRB 050904 , 2006 .
[33] D. Guetta,et al. The Luminosity and Angular Distributions of Long‐Duration Gamma‐Ray Bursts , 2005 .
[34] T. Budavari,et al. The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.
[35] S. Piranomonte,et al. Selection effects shaping the gamma ray burst redshift distributions , 2007, 0704.2189.
[36] STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.
[37] T. Sakamoto,et al. A new γ-ray burst classification scheme from GRB 060614 , 2006, Nature.
[38] Bing Zhang,et al. Low-Luminosity Gamma-Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor , 2007 .
[39] S. B. Pandey,et al. The dark nature of GRB 051022 and its host galaxy , 2007, 0708.3043.
[40] Charles D. Dermer,et al. On the Redshift Distribution of Gamma-Ray Bursts in the Swift Era , 2006, astro-ph/0610043.
[41] IoA,et al. A homogeneous sample of sub-damped Lyman systems – IV. Global metallicity evolution , 2007, 0707.2697.
[42] Bing Zhang,et al. Making a Short Gamma-Ray Burst from a Long one: Implications for the Nature of GRB 060614 , 2007 .
[43] D. Guetta,et al. Where are the missing gamma-ray burst redshifts? , 2007, 0711.0242.
[44] S. Savaglio,et al. GRBs as cosmological probes—cosmic chemical evolution , 2006, astro-ph/0609489.
[45] S. B. Cenko,et al. Spectroscopy of GRB 050505 at z = 4.275: A log N(H I) = 22.1 DLA Host Galaxy and the Nature of the Progenitor , 2006 .
[46] Sandra Savaglio,et al. Intervening Metal Systems in GRB and QSO Sight Lines: The Mg II and C IV Question , 2007, 0705.0706.
[47] Jason X. Prochaska,et al. The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Lyα Systems , 2003 .
[48] IoA,et al. On the Incidence of Strong Mg II Absorbers along Gamma-Ray Burst Sight Lines , 2006 .
[49] E. Berger,et al. A Morphological Study of Gamma-Ray Burst Host Galaxies , 2005 .
[50] S. B. Cenko,et al. Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions , 2006, Nature.
[51] J. Bloom. Is the Redshift Clustering of Long-Duration Gamma-Ray Bursts Significant? , 2003, astro-ph/0302249.
[52] H.-W. Chen,et al. ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .
[53] R. Bouwens,et al. UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.
[54] Andrew M. Hopkins,et al. On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.
[55] L. Kewley,et al. Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 HIGH-RESOLUTION MEASUREMENTS OF THE HALOS OF FOUR DARK MATTER-DOMINATED GALAXIES: DEVIATIONS FROM A UNIVERSAL DENSITY PROFILE 1 , 2004 .
[56] Li-Xin Li,et al. Correlation between the peak spectral energy of gamma-ray bursts and the peak luminosity of the underlying supernovae: implication for the nature of the gamma-ray burst–supernova connection , 2006, astro-ph/0608315.
[57] Simulations of Cosmic Chemical Enrichment , 2006, astro-ph/0604107.
[58] S. Djorgovski,et al. The afterglow, the redshift, and the extreme energetics of the gamma-ray burst 990123 , 1999, astro-ph/9902272.
[59] Cristiano Porciani,et al. On the Association of Gamma-Ray Bursts with Massive Stars: Implications for Number Counts and Lensing Statistics , 2001 .
[60] Nathaniel R. Butler,et al. A Complete Catalog of Swift Gamma-Ray Burst Spectra and Durations: Demise of a Physical Origin for Pre-Swift High-Energy Correlations , 2007, 0706.1275.
[61] Bradley E. Schaefer,et al. The Hubble Diagram to Redshift >6 from 69 Gamma-Ray Bursts , 2006, astro-ph/0612285.
[62] A. Loeb,et al. ApJ in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE EXPECTED REDSHIFT DISTRIBUTION OF GAMMA-RAY BURSTS , 2002 .
[63] A. S. Fruchter,et al. On the Lyalpha emission from gamma-ray burst host galaxies: Evidence for low metallicities , 2003, astro-ph/0306403.
[64] Bing Zhang,et al. Gamma-Ray Bursts: Progress, Problems & Prospects , 2004 .
[65] Enhanced cosmological GRB rates and implications for cosmogenic neutrinos , 2006, astro-ph/0610481.
[66] T. Totani. Cosmological Gamma-Ray Bursts and Evolution of Galaxies , 1997, astro-ph/9707051.
[67] Mark Dickinson,et al. Multiwavelength Constraints on the Cosmic Star Formation History from Spectroscopy: The Rest-Frame Ultraviolet, Hα, and Infrared Luminosity Functions at Redshifts 1.9 ≲ z ≲ 3.4 , 2007, 0706.4091.
[68] A. MacFadyen,et al. Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.
[69] J. P. U. Fynbo,et al. A Mean Redshift of 2.8 for Swift gamma - ray bursts , 2005 .
[70] Kentaro Aoki,et al. Implications for Cosmic Reionization from the Optical Afterglow Spectrum of the Gamma-Ray Burst 050904 at z = 6.3 , 2005, astro-ph/0512154.
[71] C. Steidel,et al. X-Ray and Radio Emission from Ultraviolet-selected Star-forming Galaxies at Redshifts 1.5 ≲ z ≲ 3.0 in the GOODS-North Field , 2004, astro-ph/0401432.
[72] John F. Beacom,et al. An Unexpectedly Swift Rise in the Gamma-Ray Burst Rate , 2007, 0709.0381.
[73] Bing Zhang,et al. Astrophysics: A burst of new ideas , 2006, Nature.
[74] B. Paczyński. Are Gamma-Ray Bursts in Star-Forming Regions? , 1997, astro-ph/9710086.
[75] P. Soffitta,et al. Optical and Radio Observations of the Afterglow from GRB 990510: Evidence for a Jet , 1999 .
[76] Li-Xin Li. Variation of the Amati relation with cosmological redshift: a selection effect or an evolution effect? , 2007, 0704.3128.
[77] P. Natarajan,et al. Could GRB 060614 and Its Presumed Host Galaxy Be a Chance Superposition? , 2006, astro-ph/0608678.
[78] R. de Grijs,et al. Starbursts: From 30 Doradus to Lyman Break Galaxies , 2005 .
[79] A. J. Castro-Tirado,et al. The GRB 030329 host: a blue low metallicity subluminous galaxy with intense star formation , 2005 .
[80] S. E. Woosley,et al. Supernovae, Jets, and Collapsars , 1999, astro-ph/9910034.
[81] M. Franx,et al. Galaxies at z~6: The UV Luminosity Function and Luminosity Density from 506 UDF, UDF-Ps, and GOODS i-dropouts , 2005, astro-ph/0509641.
[82] Expected Number and Flux Distribution of Gamma-Ray Burst Afterglows with High Redshifts , 2000, astro-ph/0002412.
[83] T. Piran,et al. Do long duration gamma ray bursts follow star formation? , 2007, astro-ph/0701194.
[84] Princeton,et al. MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .
[85] Timothy M. Heckman,et al. Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.
[86] S. R. Kulkarni,et al. Gamma-Ray Burst Energetics and the Gamma-Ray Burst Hubble Diagram: Promises and Limitations , 2003 .
[87] K. Z. Stanek,et al. BVRI Observations of the Optical Afterglow of GRB 990510 , 1999, astro-ph/9905304.
[88] Christopher D. Martin,et al. Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.
[89] Max Pettini,et al. Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.
[90] Chile,et al. A log NH I = 22.6 Damped Lyα Absorber in a Dark Gamma-Ray Burst: The Environment of GRB 050401 , 2005, astro-ph/0510368.
[91] D. York,et al. The Role of Sub-Damped Lyα Absorbers in the Cosmic Evolution of Metals , 2006, astro-ph/0608126.
[92] C. Steidel,et al. Metal Abundances at z < 1.5: Fresh Clues to the Chemical Enrichment History of Damped Lyα Systems , 1998, astro-ph/9808017.
[93] Joshua S. Bloom,et al. Gamma-ray bursts from stellar remnants - Probing the universe at high redshift , 1998 .
[94] Max Pettini,et al. The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.
[95] R. S. Priddey,et al. Probing cosmic chemical evolution with gamma-ray bursts: GRB 060206 at z = 4.048 , 2006, astro-ph/0602444.
[96] G. Ghirlanda,et al. Spectral analysis of Swift long gamma-ray bursts with known redshift , 2007, 0704.0791.
[97] Enrico Ramirez-Ruiz,et al. The redshift distribution of gamma-ray bursts revisited , 2005 .
[98] On the assembly history of dark matter haloes , 2005, astro-ph/0510372.
[99] S. Djorgovski,et al. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997 , 1997, Nature.
[100] Stefano Casertano,et al. Rest-Frame Ultraviolet-to-Optical Properties of Galaxies at z ≈ 6 and z ≈ 5 in the Hubble Ultra Deep Field: From Hubble to Spitzer , 2005 .
[101] P. Natarajan,et al. SN 2006aj and the Nature of Low-Luminosity Gamma-Ray Bursts , 2006, astro-ph/0603832.
[102] S.-C. Yoon,et al. Single star progenitors of long gamma-ray bursts , 2006, astro-ph/0606637.
[103] P. Vreeswijk,et al. Strong damped Lyalpha absorption in the host of GRB 030323 , 2004 .
[104] Evert Rol,et al. GRB 051022: Physical Parameters and Extinction of a Prototype Dark Burst , 2007, 0706.1518.
[105] Alexander Heger,et al. The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.
[106] N. Langer,et al. On the Collapsar Model of Long Gamma-Ray Bursts:Constraints from Cosmic Metallicity Evolution , 2005, astro-ph/0512271.
[107] Switzerland,et al. Stellar evolution with rotation - XIII. Predicted GRB rates at various Z , 2005, astro-ph/0507343.
[108] Norbert Langer,et al. Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts , 2005 .
[109] M. Livio,et al. Binary star progenitors of long gamma-ray bursts , 2007, astro-ph/0702540.
[110] T. Piran. The physics of gamma-ray bursts , 2004, astro-ph/0405503.
[111] David L. Band,et al. Postlaunch Analysis of Swift’s Gamma-Ray Burst Detection Sensitivity , 2006, astro-ph/0602267.
[112] C. Kouveliotou,et al. Transient optical emission from the error box of the γ-ray burst of 28 February 1997 , 1997, Nature.
[113] Cambridge,et al. ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .
[114] Andre Maeder,et al. Stellar Evolution with Rotation , 2000 .
[115] Jesper Sollerman,et al. No supernovae associated with two long-duration γ-ray bursts , 2006, Nature.
[116] M. Pettini,et al. A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.
[117] S. R. Kulkarni,et al. A Redshift Determination for XRF 020903: First Spectroscopic Observations of an X-Ray Flash , 2003, astro-ph/0311050.
[118] S. M. Fall,et al. Hubble Space Telescope Observations of Element Abundances in Low-Redshift Damped Lyα Galaxies and Implications for the Global Metallicity-Redshift Relation* , 2004, astro-ph/0409234.
[119] Low-Redshift Damped Lyα Galaxies toward the Quasars B2 0827+243, PKS 0952+179, PKS 1127–145, and PKS 1629+120* , 2002, astro-ph/0211297.
[120] S. B. Cenko,et al. Afterglows, Redshifts, and Properties of Swift Gamma-Ray Bursts , 2005, astro-ph/0505107.
[121] Nathaniel Butler,et al. Gamma-Ray Burst Energetics in the Swift Era , 2007, 0707.4478.
[122] Jason X. Prochaska,et al. Probing the Interstellar Medium near Star-forming Regions with Gamma-Ray Burst Afterglow Spectroscopy: Gas, Metals, and Dust , 2007 .
[123] Massimo Della Valle,et al. On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae , 2006, astro-ph/0612194.
[124] G. Tagliaferri,et al. A Metal-rich Molecular Cloud Surrounds GRB 050904 at Redshift 6.3 , 2006, astro-ph/0611305.
[125] Iap,et al. The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.
[126] J. Vink. Constraining GRB progenitor models by probing Wolf-Rayet wind geometries in the Large Magellanic Cloud , 2007, 0704.2690.
[127] D. A. Kann,et al. An optical supernova associated with the X-ray flash XRF 060218 , 2006, Nature.