Star formation history up to z = 7.4: implications for gamma-ray bursts and cosmic metallicity evolution

The current Swift sample of gamma-ray bursts (GRBs) with measured redshifts allows us to test the assumption that GRBs trace star formation in the Universe. Some authors have claimed that the rate of GRBs increases with cosmic redshift faster than the star formation rate, whose cause is not yet known. In this paper, I investigate the possibility of interpreting the observed discrepancy between the GRB rate history and the star formation rate history using cosmic metallicity evolution. I am motivated by the observation that cosmic metallicity evolves with redshift and GRBs tend to occur in low-metallicity galaxies. First, I derive a star formation history up to redshift z = 7.4 from an updated sample of star formation rate densities. This is obtained by adding the new ultraviolet measurements of Bouwens et al. and the new ultraviolet and infrared measurements of Reddy et al. to the existing sample compiled by Hopkins & Beacom. Then, adopting a simple model for the relation between GRB production and the cosmic metallicity history as proposed by Langer & Norman, I show that the observed redshift distribution of the Swift GRBs can be reproduced with good accuracy. Although the results are limited by the small size of the GRB sample and the poorly understood selection biases in detection and localization of GRBs and in redshift determination, they suggest that GRBs trace both star formation and metallicity evolution. If the star formation history can be accurately measured with other approaches, which is presumably achievable in the near future, it will be possible to determine the cosmic metallicity evolution using the study of the redshift distribution of GRBs.

[1]  Jorick S. Vink,et al.  On the metallicity dependence of Wolf-Rayet winds , 2005 .

[2]  S. Okamura,et al.  Subaru Deep Survey VI. A Census of Lyman Break Galaxies at z=4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.

[3]  Christian Wolf,et al.  The metallicity dependence of the long-duration gamma-ray burst rate from host galaxy luminosities , 2007 .

[4]  The mass function of the stellar component of galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0406299.

[5]  Boulder,et al.  The redshift distribution of Swift gamma‐ray bursts: evidence for evolution , 2006, astro-ph/0607618.

[6]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[7]  Helmut Jerjen,et al.  Galaxies in the local volume , 2008 .

[8]  P. Meszaros Gamma-ray bursts , 1998 .

[9]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[10]  P. Crowther,et al.  Physical Properties of Wolf-Rayet Stars , 2006, astro-ph/0610356.

[11]  Donald Q. Lamb,et al.  Gamma-Ray Bursts as a Probe of the Very High Redshift Universe , 2000 .

[12]  Cambridge,et al.  The star formation rate of the Universe at z~ 6 from the Hubble Ultra-Deep Field , 2004, astro-ph/0403223.

[13]  L. Dessart,et al.  Stellar and wind properties of LMC WC4 stars A metallicity dependence for Wolf-Rayet mass-loss rates ? , 2002, astro-ph/0206233.

[14]  The Rest-Frame Ultraviolet Luminosity Density of Star-forming Galaxies at Redshifts z > 3.5 , 2003, astro-ph/0309065.

[15]  L. Kewley,et al.  Metallicity of Star-Forming Galaxies , 2005 .

[16]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[17]  S. Djorgovski,et al.  The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999 , 1999, Nature.

[18]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[19]  L. Kewley,et al.  THE METALLICITY HISTORY OF DISK GALAXIES , 2007 .

[20]  D. Fugazza,et al.  An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova , 2006, Nature.

[21]  S. E. Nuza,et al.  The host galaxies of long-duration gamma-ray bursts in a cosmological hierarchical scenario , 2006, astro-ph/0611122.

[22]  J. Bloom,et al.  Toward a More Standardized Candle Using Gamma-Ray Burst Energetics and Spectra , 2004, astro-ph/0408413.

[23]  Kevin C. Hurley,et al.  The Host Galaxy of GRB 031203: Implications of Its Low Metallicity, Low Redshift, and Starburst Nature , 2004, astro-ph/0402085.

[24]  Volker Springel,et al.  Star formation rate and metallicity of damped Lyman α absorbers in cosmological smoothed particle hydrodynamics simulations , 2003, astro-ph/0305409.

[25]  G. Helou,et al.  The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z ~ 2 in the GOODS Fields , 2007, astro-ph/0701283.

[26]  A. J. Levan,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[27]  R. McMahon,et al.  Near-infrared properties of i-drop galaxies in the Hubble Ultra Deep Field , 2004, astro-ph/0403585.

[28]  The gamma-ray burst luminosity function in the light of the Swift 2 year data , 2006, astro-ph/0612278.

[29]  An observational limit on the earliest gamma-ray bursts , 2007, astro-ph/0702357.

[30]  L.Armus,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 PROBING THE COSMIC STAR FORMATION USING LONG GAMMA-RAY BURSTS: NEW CONSTRAINTS FROM THE SPITZER SPACE TELESCOPE ∗ , 2006 .

[31]  A. S. Fruchter,et al.  Gamma-Ray Burst-Selected High-Redshift Galaxies: Comparison to Field Galaxy Populations to z ~ 3 , 2005, astro-ph/0508197.

[32]  Y. Yoshii,et al.  Cosmological Implications of the Very High Redshift GRB 050904 , 2006 .

[33]  D. Guetta,et al.  The Luminosity and Angular Distributions of Long‐Duration Gamma‐Ray Bursts , 2005 .

[34]  T. Budavari,et al.  The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.

[35]  S. Piranomonte,et al.  Selection effects shaping the gamma ray burst redshift distributions , 2007, 0704.2189.

[36]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[37]  T. Sakamoto,et al.  A new γ-ray burst classification scheme from GRB 060614 , 2006, Nature.

[38]  Bing Zhang,et al.  Low-Luminosity Gamma-Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor , 2007 .

[39]  S. B. Pandey,et al.  The dark nature of GRB 051022 and its host galaxy , 2007, 0708.3043.

[40]  Charles D. Dermer,et al.  On the Redshift Distribution of Gamma-Ray Bursts in the Swift Era , 2006, astro-ph/0610043.

[41]  IoA,et al.  A homogeneous sample of sub-damped Lyman systems – IV. Global metallicity evolution , 2007, 0707.2697.

[42]  Bing Zhang,et al.  Making a Short Gamma-Ray Burst from a Long one: Implications for the Nature of GRB 060614 , 2007 .

[43]  D. Guetta,et al.  Where are the missing gamma-ray burst redshifts? , 2007, 0711.0242.

[44]  S. Savaglio,et al.  GRBs as cosmological probes—cosmic chemical evolution , 2006, astro-ph/0609489.

[45]  S. B. Cenko,et al.  Spectroscopy of GRB 050505 at z = 4.275: A log N(H I) = 22.1 DLA Host Galaxy and the Nature of the Progenitor , 2006 .

[46]  Sandra Savaglio,et al.  Intervening Metal Systems in GRB and QSO Sight Lines: The Mg II and C IV Question , 2007, 0705.0706.

[47]  Jason X. Prochaska,et al.  The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Lyα Systems , 2003 .

[48]  IoA,et al.  On the Incidence of Strong Mg II Absorbers along Gamma-Ray Burst Sight Lines , 2006 .

[49]  E. Berger,et al.  A Morphological Study of Gamma-Ray Burst Host Galaxies , 2005 .

[50]  S. B. Cenko,et al.  Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions , 2006, Nature.

[51]  J. Bloom Is the Redshift Clustering of Long-Duration Gamma-Ray Bursts Significant? , 2003, astro-ph/0302249.

[52]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[53]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[54]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[55]  L. Kewley,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 HIGH-RESOLUTION MEASUREMENTS OF THE HALOS OF FOUR DARK MATTER-DOMINATED GALAXIES: DEVIATIONS FROM A UNIVERSAL DENSITY PROFILE 1 , 2004 .

[56]  Li-Xin Li,et al.  Correlation between the peak spectral energy of gamma-ray bursts and the peak luminosity of the underlying supernovae: implication for the nature of the gamma-ray burst–supernova connection , 2006, astro-ph/0608315.

[57]  Simulations of Cosmic Chemical Enrichment , 2006, astro-ph/0604107.

[58]  S. Djorgovski,et al.  The afterglow, the redshift, and the extreme energetics of the gamma-ray burst 990123 , 1999, astro-ph/9902272.

[59]  Cristiano Porciani,et al.  On the Association of Gamma-Ray Bursts with Massive Stars: Implications for Number Counts and Lensing Statistics , 2001 .

[60]  Nathaniel R. Butler,et al.  A Complete Catalog of Swift Gamma-Ray Burst Spectra and Durations: Demise of a Physical Origin for Pre-Swift High-Energy Correlations , 2007, 0706.1275.

[61]  Bradley E. Schaefer,et al.  The Hubble Diagram to Redshift >6 from 69 Gamma-Ray Bursts , 2006, astro-ph/0612285.

[62]  A. Loeb,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE EXPECTED REDSHIFT DISTRIBUTION OF GAMMA-RAY BURSTS , 2002 .

[63]  A. S. Fruchter,et al.  On the Lyalpha emission from gamma-ray burst host galaxies: Evidence for low metallicities , 2003, astro-ph/0306403.

[64]  Bing Zhang,et al.  Gamma-Ray Bursts: Progress, Problems & Prospects , 2004 .

[65]  Enhanced cosmological GRB rates and implications for cosmogenic neutrinos , 2006, astro-ph/0610481.

[66]  T. Totani Cosmological Gamma-Ray Bursts and Evolution of Galaxies , 1997, astro-ph/9707051.

[67]  Mark Dickinson,et al.  Multiwavelength Constraints on the Cosmic Star Formation History from Spectroscopy: The Rest-Frame Ultraviolet, Hα, and Infrared Luminosity Functions at Redshifts 1.9 ≲ z ≲ 3.4 , 2007, 0706.4091.

[68]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[69]  J. P. U. Fynbo,et al.  A Mean Redshift of 2.8 for Swift gamma - ray bursts , 2005 .

[70]  Kentaro Aoki,et al.  Implications for Cosmic Reionization from the Optical Afterglow Spectrum of the Gamma-Ray Burst 050904 at z = 6.3 , 2005, astro-ph/0512154.

[71]  C. Steidel,et al.  X-Ray and Radio Emission from Ultraviolet-selected Star-forming Galaxies at Redshifts 1.5 ≲ z ≲ 3.0 in the GOODS-North Field , 2004, astro-ph/0401432.

[72]  John F. Beacom,et al.  An Unexpectedly Swift Rise in the Gamma-Ray Burst Rate , 2007, 0709.0381.

[73]  Bing Zhang,et al.  Astrophysics: A burst of new ideas , 2006, Nature.

[74]  B. Paczyński Are Gamma-Ray Bursts in Star-Forming Regions? , 1997, astro-ph/9710086.

[75]  P. Soffitta,et al.  Optical and Radio Observations of the Afterglow from GRB 990510: Evidence for a Jet , 1999 .

[76]  Li-Xin Li Variation of the Amati relation with cosmological redshift: a selection effect or an evolution effect? , 2007, 0704.3128.

[77]  P. Natarajan,et al.  Could GRB 060614 and Its Presumed Host Galaxy Be a Chance Superposition? , 2006, astro-ph/0608678.

[78]  R. de Grijs,et al.  Starbursts: From 30 Doradus to Lyman Break Galaxies , 2005 .

[79]  A. J. Castro-Tirado,et al.  The GRB 030329 host: a blue low metallicity subluminous galaxy with intense star formation , 2005 .

[80]  S. E. Woosley,et al.  Supernovae, Jets, and Collapsars , 1999, astro-ph/9910034.

[81]  M. Franx,et al.  Galaxies at z~6: The UV Luminosity Function and Luminosity Density from 506 UDF, UDF-Ps, and GOODS i-dropouts , 2005, astro-ph/0509641.

[82]  Expected Number and Flux Distribution of Gamma-Ray Burst Afterglows with High Redshifts , 2000, astro-ph/0002412.

[83]  T. Piran,et al.  Do long duration gamma ray bursts follow star formation? , 2007, astro-ph/0701194.

[84]  Princeton,et al.  MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .

[85]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[86]  S. R. Kulkarni,et al.  Gamma-Ray Burst Energetics and the Gamma-Ray Burst Hubble Diagram: Promises and Limitations , 2003 .

[87]  K. Z. Stanek,et al.  BVRI Observations of the Optical Afterglow of GRB 990510 , 1999, astro-ph/9905304.

[88]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[89]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[90]  Chile,et al.  A log NH I = 22.6 Damped Lyα Absorber in a Dark Gamma-Ray Burst: The Environment of GRB 050401 , 2005, astro-ph/0510368.

[91]  D. York,et al.  The Role of Sub-Damped Lyα Absorbers in the Cosmic Evolution of Metals , 2006, astro-ph/0608126.

[92]  C. Steidel,et al.  Metal Abundances at z < 1.5: Fresh Clues to the Chemical Enrichment History of Damped Lyα Systems , 1998, astro-ph/9808017.

[93]  Joshua S. Bloom,et al.  Gamma-ray bursts from stellar remnants - Probing the universe at high redshift , 1998 .

[94]  Max Pettini,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[95]  R. S. Priddey,et al.  Probing cosmic chemical evolution with gamma-ray bursts: GRB 060206 at z = 4.048 , 2006, astro-ph/0602444.

[96]  G. Ghirlanda,et al.  Spectral analysis of Swift long gamma-ray bursts with known redshift , 2007, 0704.0791.

[97]  Enrico Ramirez-Ruiz,et al.  The redshift distribution of gamma-ray bursts revisited , 2005 .

[98]  On the assembly history of dark matter haloes , 2005, astro-ph/0510372.

[99]  S. Djorgovski,et al.  Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997 , 1997, Nature.

[100]  Stefano Casertano,et al.  Rest-Frame Ultraviolet-to-Optical Properties of Galaxies at z ≈ 6 and z ≈ 5 in the Hubble Ultra Deep Field: From Hubble to Spitzer , 2005 .

[101]  P. Natarajan,et al.  SN 2006aj and the Nature of Low-Luminosity Gamma-Ray Bursts , 2006, astro-ph/0603832.

[102]  S.-C. Yoon,et al.  Single star progenitors of long gamma-ray bursts , 2006, astro-ph/0606637.

[103]  P. Vreeswijk,et al.  Strong damped Lyalpha absorption in the host of GRB 030323 , 2004 .

[104]  Evert Rol,et al.  GRB 051022: Physical Parameters and Extinction of a Prototype Dark Burst , 2007, 0706.1518.

[105]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[106]  N. Langer,et al.  On the Collapsar Model of Long Gamma-Ray Bursts:Constraints from Cosmic Metallicity Evolution , 2005, astro-ph/0512271.

[107]  Switzerland,et al.  Stellar evolution with rotation - XIII. Predicted GRB rates at various Z , 2005, astro-ph/0507343.

[108]  Norbert Langer,et al.  Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts , 2005 .

[109]  M. Livio,et al.  Binary star progenitors of long gamma-ray bursts , 2007, astro-ph/0702540.

[110]  T. Piran The physics of gamma-ray bursts , 2004, astro-ph/0405503.

[111]  David L. Band,et al.  Postlaunch Analysis of Swift’s Gamma-Ray Burst Detection Sensitivity , 2006, astro-ph/0602267.

[112]  C. Kouveliotou,et al.  Transient optical emission from the error box of the γ-ray burst of 28 February 1997 , 1997, Nature.

[113]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[114]  Andre Maeder,et al.  Stellar Evolution with Rotation , 2000 .

[115]  Jesper Sollerman,et al.  No supernovae associated with two long-duration γ-ray bursts , 2006, Nature.

[116]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[117]  S. R. Kulkarni,et al.  A Redshift Determination for XRF 020903: First Spectroscopic Observations of an X-Ray Flash , 2003, astro-ph/0311050.

[118]  S. M. Fall,et al.  Hubble Space Telescope Observations of Element Abundances in Low-Redshift Damped Lyα Galaxies and Implications for the Global Metallicity-Redshift Relation* , 2004, astro-ph/0409234.

[119]  Low-Redshift Damped Lyα Galaxies toward the Quasars B2 0827+243, PKS 0952+179, PKS 1127–145, and PKS 1629+120* , 2002, astro-ph/0211297.

[120]  S. B. Cenko,et al.  Afterglows, Redshifts, and Properties of Swift Gamma-Ray Bursts , 2005, astro-ph/0505107.

[121]  Nathaniel Butler,et al.  Gamma-Ray Burst Energetics in the Swift Era , 2007, 0707.4478.

[122]  Jason X. Prochaska,et al.  Probing the Interstellar Medium near Star-forming Regions with Gamma-Ray Burst Afterglow Spectroscopy: Gas, Metals, and Dust , 2007 .

[123]  Massimo Della Valle,et al.  On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae , 2006, astro-ph/0612194.

[124]  G. Tagliaferri,et al.  A Metal-rich Molecular Cloud Surrounds GRB 050904 at Redshift 6.3 , 2006, astro-ph/0611305.

[125]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[126]  J. Vink Constraining GRB progenitor models by probing Wolf-Rayet wind geometries in the Large Magellanic Cloud , 2007, 0704.2690.

[127]  D. A. Kann,et al.  An optical supernova associated with the X-ray flash XRF 060218 , 2006, Nature.