Convolutional codes with maximum distance profile

Abstract Maximum distance profile codes are characterized by the property that two trajectories which start at the same state and proceed to a different state will have the maximum possible minimum distance from each other relative to any other convolutional code of the same rate and degree. In this paper we use methods from systems theory to characterize maximum distance profile codes algebraically. The main result shows that maximum distance profile codes form a generic set inside the variety which parametrizes the set of convolutional codes of a fixed rate and a fixed degree.

[1]  Christoforos N. Hadjicostis,et al.  Nonconcurrent error detection and correction in fault-tolerant linear finite-state machines , 2003, IEEE Trans. Autom. Control..

[2]  Joachim Rosenthal,et al.  Strongly-MDS convolutional codes , 2003, IEEE Transactions on Information Theory.

[3]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[4]  M. Hazewinkel Moduli and canonical forms for linear dynamical systems III : the algebraic-geometric case , 1977 .

[5]  A. Tether Construction of minimal linear state-variable models from finite input-output data , 1970 .

[6]  M. Fliess On the structure of linear recurrent error-control codes , 2002 .

[7]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[8]  R. Johannesson,et al.  Distances and distance bounds for convolutional codes—an overview , 1989 .

[9]  M. S. Ravi,et al.  A smooth compactification of the space of transfer functions with fixed McMillan degree , 1994 .

[10]  C. Hadjicostis NON-CONCURRENT ERROR DETECTION AND CORRECTION IN FAULT-TOLERANT LINEAR FINITE-STATE MACHINES , 2002 .

[11]  A. Antoulas On recursiveness and related topics in linear systems , 1986 .

[12]  Joachim Rosenthal,et al.  Constructions of MDS-convolutional codes , 2001, IEEE Trans. Inf. Theory.

[13]  Joachim Rosenthal,et al.  BCH convolutional codes , 1999, IEEE Trans. Inf. Theory.

[14]  Joachim Rosenthal,et al.  On behaviors and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[15]  Heide Gluesing-Luerssen,et al.  On Cyclic Convolutional Codes , 2002 .