Mechanical properties and characteristics of microtubules: A review

Abstract This review focuses on modeling techniques developed for prediction of mechanical properties and characterization of microtubules, polyatomic structures that contain billions of different types of atoms. The challenge of modeling mechanical properties of microtubules is to achieve both computational efficiency and accuracy. Various kinds of techniques have been adopted and created in practice. Atomistic simulation method is useful for simulation of atomic structures, however, because of computational limitations, it is not realistic to adopt it for modeling of long microtubules which involve billions of atoms. Classical continuum mechanics does not incorporate fundamental atomic interactions. Bridging-scale techniques are developed to address the problems in traditional macroscopic and microscopic modeling, which combine the intrinsic interatomic potential and continuum mechanical solution frameworks, hence possess merits in both atomic simulation and computational continuum mechanics. In view of the fast development in this research topic, this article provides a general review of the past and recent advances in mechanical properties and characterization of microtubules.

[1]  J. McIntosh,et al.  A molecular-mechanical model of the microtubule. , 2005, Biophysical journal.

[2]  C. Wang,et al.  Collision of a suddenly released bent carbon nanotube with a circular graphene sheet , 2010 .

[3]  Christoph F Schmidt,et al.  Elastic response, buckling, and instability of microtubules under radial indentation. , 2006, Biophysical journal.

[4]  A. Libchaber,et al.  Microtubules and vesicles under controlled tension , 1997 .

[5]  Libchaber,et al.  Buckling microtubules in vesicles. , 1996, Physical review letters.

[6]  K. M. Liew,et al.  Nonlocal elastic beam models for flexural wave propagation in double-walled carbon nanotubes , 2009 .

[7]  K. M. Liew,et al.  Buckling properties of carbon nanotube bundles , 2005 .

[8]  K. M. Liew,et al.  A computational framework for transverse compression of microtubules based on a higher-order Cauchy–Born rule , 2013 .

[9]  K. Liew,et al.  A molecular mechanics analysis of the buckling behavior of carbon nanorings under tension , 2009 .

[10]  Michael Ortiz,et al.  Quasicontinuum simulation of fracture at the atomic scale , 1998 .

[11]  Y. Wang,et al.  Reorganization of actin filament bundles in living fibroblasts , 1984, The Journal of cell biology.

[12]  J. Monaghan Why Particle Methods Work , 1982 .

[13]  K. Liew,et al.  Effects of vacancy defect reconstruction on the elastic properties of carbon nanotubes , 2009 .

[14]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[15]  K. M. Liew,et al.  Twisting effects of carbon nanotube bundles subjected to axial compression and tension , 2006 .

[16]  Yuanwen Gao,et al.  A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm , 2010 .

[17]  T D Pollard,et al.  Mechanical properties of actin. , 1985, The Journal of biological chemistry.

[18]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[19]  Shin'ichi Ishiwata,et al.  Temperature dependence of the flexural rigidity of single microtubules. , 2008, Biochemical and biophysical research communications.

[20]  R. Phillips,et al.  Crystals, Defects and Microstructures: Modeling Across Scales , 2001 .

[21]  K. Liew,et al.  Application of the higher‐order Cauchy–Born rule in mesh‐free continuum and multiscale simulation of carbon nanotubes , 2008 .

[22]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[23]  S. Suresh,et al.  Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships , 2006 .

[24]  C. Séguin,et al.  The effects of high hydrostatic pressure on microfilaments and microtubules in Xenopus laevis. , 1978, Journal of embryology and experimental morphology.

[25]  Stéphanie Portet,et al.  Anisotropic elastic properties of microtubules , 2005, The European physical journal. E, Soft matter.

[26]  K. Liew,et al.  Density Functional Study of Fluorinated Single-Walled Silicon Carbide Nanotubes , 2012 .

[27]  Ö. Civalek,et al.  FREE VIBRATION ANALYSIS OF MICROTUBULES AS CYTOSKELETON COMPONENTS: NONLOCAL EULER-BERNOULLI BEAM MODELING , 2010 .

[28]  Gregory M. Nielson,et al.  Reproducing Kernel Functions for Sard Spaces of Type B , 1974 .

[29]  K. Liew,et al.  The effects of grafted amine groups on the elastic properties of single-walled carbon nanotubes , 2009 .

[30]  E. B. Tadmor,et al.  Quasicontinuum models of interfacial structure and deformation , 1998 .

[31]  Ö. Civalek,et al.  Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory , 2011 .

[32]  Analyse Expérimentale et Modélisation du Comportement Rhéologique du Cytosquelette , 1995 .

[33]  S. Kitipornchai,et al.  Buckling characteristics of embedded multi-walled carbon nanotubes , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  D. H. McLain,et al.  Drawing Contours from Arbitrary Data Points , 1974, Comput. J..

[35]  Mark A Fleming,et al.  Smoothing and accelerated computations in the element free Galerkin method , 1996 .

[36]  A. Mioduchowski,et al.  Noncoaxial resonance of an isolated multiwall carbon nanotube , 2002 .

[37]  H Tashiro,et al.  Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. , 1995, Cell motility and the cytoskeleton.

[38]  K. M. Liew,et al.  Mesh-free radial basis function method for buckling analysis of non-uniformly loaded arbitrarily shaped shear deformable plates , 2004 .

[39]  T. Belytschko,et al.  Element-free galerkin methods for static and dynamic fracture , 1995 .

[40]  C. Q. Ru,et al.  Effective bending stiffness of carbon nanotubes , 2000 .

[41]  George C. Schatz,et al.  An atomistic-continuum Cosserat rod model of carbon nanotubes , 2009 .

[42]  Michael Ortiz,et al.  Mixed Atomistic and Continuum Models of Deformation in Solids , 1996 .

[43]  K. Liew,et al.  Silicon Carbide Nanotubes Serving as a Highly Sensitive Gas Chemical Sensor for Formaldehyde , 2011 .

[44]  Margaret Lucas,et al.  A preliminary investigation into optimising the response of vibrating systems used for ultrasonic cutting , 2004 .

[45]  Vijay K. Varadan,et al.  Vibration of carbon nanotubes studied using nonlocal continuum mechanics , 2006 .

[46]  Saulius Juodkazis,et al.  Flexural Rigidity of a Single Microtubule , 2002 .

[47]  T D Pollard,et al.  Mechanical properties of brain tubulin and microtubules , 1988, The Journal of cell biology.

[48]  K. Liew,et al.  Effects of boron nitride impurities on the elastic properties of carbon nanotubes , 2008, Nanotechnology.

[49]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[50]  K. M. Liew,et al.  Modeling of the mechanical instability of carbon nanotubes , 2008 .

[51]  K. Liew,et al.  Deformation effects of multi-functional monatomic carbon ring device , 2011 .

[52]  Deborah Kuchnir Fygenson,et al.  Mechanics of Microtubule-Based Membrane Extension , 1997 .

[53]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[54]  M. Kirschner,et al.  Microtubule bending and breaking in living fibroblast cells. , 1999, Journal of cell science.

[55]  C. Wang,et al.  Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams , 2007 .

[56]  Hui‐Shen Shen Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium , 2010, Biomechanics and modeling in mechanobiology.

[57]  K. M. Liew,et al.  Elasto‐plasticity revisited: numerical analysis via reproducing kernel particle method and parametric quadratic programming , 2002 .

[58]  S. Kitipornchai,et al.  Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory , 2009 .

[59]  Daniel A. Fletcher,et al.  Reversible stress softening of actin networks , 2007, Nature.

[60]  K. Porter,et al.  Morphology of Microtubules of Plant Cell , 1964, Science.

[61]  K. Liew,et al.  The buckling of single-walled carbon nanotubes upon bending: The higher order gradient continuum and mesh-free method , 2008 .

[62]  J. Howard,et al.  Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape , 1993, The Journal of cell biology.

[63]  K. Liew,et al.  Mesh-free simulation of single-walled carbon nanotubes using higher order Cauchy–Born rule , 2008 .

[64]  K. M. Liew,et al.  Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes , 2008 .

[65]  K. M. Liew,et al.  Moving least squares differential quadrature method and its application to the analysis of shear deformable plates , 2003 .

[66]  C. Q. Ru,et al.  Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium , 2001 .

[67]  Umberto Morbiducci,et al.  Biomechanics of actin filaments: a computational multi-level study. , 2011, Journal of biomechanics.

[68]  Yang Xiang,et al.  Research on thick plate vibration: a literature survey , 1995 .

[69]  Hui‐Shen Shen Nonlocal shear deformable shell model for torsional buckling and postbuckling of microtubules in thermal environments , 2013 .

[70]  Bryan D. Vogt,et al.  Atomistic-based continuum constitutive relation for microtubules: elastic modulus prediction , 2008 .

[71]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[72]  K. Porter,et al.  Cytoplasmic fibrils in living cultured cells , 1967, Protoplasma.

[73]  Ted Belytschko,et al.  ON THE COMPLETENESS OF MESHFREE PARTICLE METHODS , 1998 .

[74]  Bin Gu,et al.  Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing , 2009 .

[75]  Jack A. Tuszynski,et al.  Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules , 2005, Math. Comput. Model..

[76]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[77]  D. Slautterback CYTOPLASMIC MICROTUBULES. I. HYDRA. , 1963 .

[78]  R. Gibson Principles of Composite Material Mechanics , 1994 .

[79]  M. Nakane,et al.  Microscopic discussions of macroscopic balance equations for solids based on atomic configurations , 2000 .

[80]  Huajian Gao,et al.  Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model , 2003 .

[81]  Ömer Civalek,et al.  Free Vibration and Bending Analyses of Cantilever Microtubules Based on Nonlocal Continuum Model , 2010 .

[82]  Ö. Civalek,et al.  Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models , 2013 .

[83]  Hui-Shen Shen,et al.  Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model. , 2010, Journal of theoretical biology.

[84]  Ted Belytschko,et al.  A coupled finite element-element-free Galerkin method , 1995 .

[85]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[86]  K. M. Liew,et al.  Fracture Properties of Defective Carbon Nanorings , 2011 .

[87]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[88]  K. M. Liew,et al.  Meshfree method for large deformation analysis–a reproducing kernel particle approach , 2002 .

[89]  Hideo Tashiro,et al.  Flexural rigidity of individual microtubules measured by a buckling force with optical traps. , 2006, Biophysical journal.

[90]  K. Liew,et al.  Elastic properties and pressure-induced structural transitions of single-walled carbon nanotubes , 2008 .

[91]  C. Q. Ru,et al.  Wave propagation in orthotropic microtubules , 2007 .

[92]  Jie Yang,et al.  Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory , 2010 .

[93]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[94]  Coarse Grain Modeling for Microtubule Mechanics , 2010 .

[95]  A. Mioduchowski,et al.  Vibration of microtubules as orthotropic elastic shells , 2006 .

[96]  J. Mizushima-Sugano,et al.  Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances. , 1983, Biochimica et biophysica acta.

[97]  Xiaoqiao He,et al.  On the use of cellular automata algorithm for the atomic-based simulation of carbon nanotubes , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[98]  K. Ewert,et al.  Radial compression of microtubules and the mechanism of action of taxol and associated proteins. , 2005, Biophysical journal.

[99]  Quan Wang,et al.  Detection of gas atoms via vibration of graphenes , 2011 .

[100]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[101]  S. K. Lai,et al.  Nonlinear Free Vibration of an Elastically-Restrained Beam with a Point Mass via the Newton-Harmonic Balancing Approach , 2009 .

[102]  K. M. Liew,et al.  A continuum mechanics framework and a constitutive model for predicting the orthotropic elastic properties of microtubules , 2011 .

[103]  C. Ru,et al.  Timoshenko-beam effects on transverse wave propagation in carbon nanotubes , 2004 .

[104]  Flyvbjerg,et al.  Spontaneous nucleation of microtubules. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[105]  Michael Ortiz,et al.  Nanomechanics of Defects in Solids , 1998 .

[106]  Shaker A. Meguid,et al.  Nanomechanics of single and multiwalled carbon nanotubes , 2004 .

[107]  Hui-Shen Shen,et al.  Nonlinear vibration of microtubules in living cells , 2011 .

[108]  K. Liew,et al.  Predicting buckling behavior of microtubules based on an atomistic-continuum model , 2011 .

[109]  C. Ru,et al.  Torsion of the central pair microtubules in eukaryotic flagella due to bending-driven lateral buckling. , 2006, Biochemical and biophysical research communications.

[110]  T. Belytschko,et al.  Fracture and crack growth by element free Galerkin methods , 1994 .

[111]  W. J. Gordon,et al.  Shepard’s method of “metric interpolation” to bivariate and multivariate interpolation , 1978 .

[112]  D. Ingber,et al.  Mechanical behavior in living cells consistent with the tensegrity model , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[113]  C. Schönenberger,et al.  Nanomechanics of microtubules. , 2002, Physical review letters.

[114]  K. M. Liew,et al.  Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction , 2005 .

[115]  Hui‐Shen Shen Nonlocal shear deformable shell model for bending buckling of microtubules embedded in an elastic medium , 2010 .

[116]  R. Netz,et al.  Non-equilibrium hydrodynamics of a rotating filament , 2006, 0803.3168.

[117]  Joachim P Spatz,et al.  Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment. , 2008, Biophysical journal.

[118]  T. Hisada,et al.  Microtubules Modulate the Stiffness of Cardiomyocytes Against Shear Stress , 2005, Circulation research.

[119]  C. Lim,et al.  Wave propagation in carbon nanotubes: Nonlocal elasticity-induced stiffness and velocity enhancement effects , 2010 .

[120]  K. M. Liew,et al.  Dynamic behaviors of long and curved microtubules based on an atomistic-continuum model , 2012 .

[121]  K. Liew,et al.  Energetics and structures of carbon nanorings , 2009 .

[122]  Henrik Flyvbjerg,et al.  Modeling elastic properties of microtubule tips and walls , 1998, European Biophysics Journal.

[123]  Aleksei Aksimentiev,et al.  Mechanical properties of a complete microtubule revealed through molecular dynamics simulation. , 2010, Biophysical journal.

[124]  Ömer Civalek,et al.  Application of strain gradient elasticity theory for buckling analysis of protein microtubules , 2011 .

[125]  K. M. Liew,et al.  Free vibration analysis of microtubules based on an atomistic-continuum model , 2012 .

[126]  A C Maggs,et al.  Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. , 1994, The Journal of biological chemistry.

[127]  Richard D. James,et al.  A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods , 2000 .

[128]  H. Ding,et al.  Growth of graphite spheres in liquid nickel , 2011 .

[129]  J. Gall,et al.  MICROTUBULE FINE STRUCTURE , 1966, The Journal of cell biology.

[130]  Peter A. Kollman,et al.  AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions , 1981 .

[131]  K. Ewert,et al.  Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions. , 2004, Physical review letters.

[132]  C. Lim On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection , 2010 .

[133]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[134]  J. Gardiner,et al.  Putative microtubule-associated proteins from the Arabidopsis genome , 2003, Protoplasma.

[135]  M. Schliwa,et al.  Flexural rigidity of microtubules measured with the use of optical tweezers. , 1996, Journal of cell science.

[136]  K. M. Liew,et al.  Tensile and compressive properties of carbon nanotube bundles , 2006 .

[137]  Robert B. Ross,et al.  Using MPI-2: Advanced Features of the Message Passing Interface , 2003, CLUSTER.

[138]  K. M. Liew,et al.  Continuum model for the vibration of multilayered graphene sheets , 2005 .

[139]  K. Liew,et al.  Multiscale modeling of carbon nanotubes under axial tension and compression , 2005 .

[140]  F. MacKintosh,et al.  Nonequilibrium Mechanics of Active Cytoskeletal Networks , 2007, Science.

[141]  T. Belytschko,et al.  DYNAMIC FRACTURE USING ELEMENT-FREE GALERKIN METHODS , 1996 .

[142]  Wanlin Guo,et al.  Relevance of Timoshenko-beam model to microtubules of low shear modulus , 2008 .

[143]  Gregory A Voth,et al.  Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. , 2006, Biophysical journal.

[144]  K. Liew,et al.  Thermal stability of single and multi-walled carbon nanotubes , 2005 .

[145]  K. Liew,et al.  Transport properties of a single layer armchair h-BNC heterostructure , 2011 .

[146]  J. Tuszynski,et al.  Results of Molecular Dynamics Computations of the Structural and Electrostatic Properties of Tubulin and Their Consequences for Microtubules , 2004 .

[147]  Hanqing Jiang,et al.  Mechanics of Microtubule Buckling Supported by Cytoplasm , 2008 .

[148]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[149]  K. M. Liew,et al.  On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation , 2004 .

[150]  Yuanwen Gao,et al.  Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory. , 2009, Biochemical and biophysical research communications.

[151]  A. Metrikine,et al.  Surface ground vibration due to a moving train in a tunnel : Two-dimensional model , 2000 .

[152]  W. Duan,et al.  Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear , 2011 .

[153]  A Mioduchowski,et al.  Orthotropic elastic shell model for buckling of microtubules. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[154]  K. Liew,et al.  Functionalization of multi-walled carbon nanotubes grafted with self-generated functional groups and their polyamide 6 composites , 2010 .

[155]  K. Liew,et al.  PREDICTING NANOVIBRATION OF MULTI-LAYERED GRAPHENE SHEETS EMBEDDED IN AN ELASTIC MATRIX , 2006 .

[156]  C. Ru,et al.  Length-dependence of flexural rigidity as a result of anisotropic elastic properties of microtubules. , 2006, Biochemical and biophysical research communications.

[157]  Y. K. Cheung,et al.  Free vibration and buckling analysis of plates by the negative stiffness method , 1986 .

[158]  K. M. Liew,et al.  The theoretical possibility of a graphene sheet spontaneously scrolling round an iron nanowire , 2012 .

[159]  K. Porter,et al.  A "MICROTUBULE" IN PLANT CELL FINE STRUCTURE , 1963, The Journal of cell biology.

[160]  J. Bereiter-Hahn,et al.  Viscoelastic properties of f-actin, microtubules, f-actin/alpha-actinin, and f-actin/hexokinase determined in microliter volumes with a novel nondestructive method. , 1999, Biophysical journal.

[161]  Tienchong Chang,et al.  Buckling of microtubules under bending and torsion , 2008 .

[162]  S. Mukherjee,et al.  Atomistic-continuum and ab initio estimation of the elastic moduli of single-walled carbon nanotubes , 2007 .