Theory and Applications of Macroscale Models in Porous Media

Systems dominated by heterogeneity over a multiplicity of scales, like porous media, still challenge our modeling efforts. The presence of disparate length- and time-scales that control dynamical processes in porous media hinders not only models predictive capabilities, but also their computational efficiency. Macrosopic models, i.e., averaged representations of pore-scale processes, are computationally efficient alternatives to microscale models in the study of transport phenomena in porous media at the system, field or device scale (i.e., at a scale much larger than a characteristic pore size). We present an overview of common upscaling methods used to formally derive macroscale equations from pore-scale (mass, momentum and energy) conservation laws. This review includes the volume averaging method, mixture theory, thermodynamically constrained averaging, homogenization, and renormalization group techniques. We apply these methods to a number of specific problems ranging from food processing to human bronchial system, and from diffusion to multiphase flow, to demonstrate the methods generality and flexibility in handling different applications. The primary intent of such an overview is not to provide a thorough review of all currently available upscaling techniques, nor a complete mathematical treatment of the ones presented, but rather a primer on some of the tools available for upscaling, the basic principles they are based upon, and their specific advantages and drawbacks, so to guide the reader in the choice of the most appropriate method for particular applications and of the most relevant technical literature.

[1]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[2]  John H. Cushman,et al.  The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles , 1997 .

[3]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[4]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[5]  William G. Gray,et al.  Geometric state function for two-fluid flow in porous media , 2018, Physical Review Fluids.

[6]  Wooyong Um,et al.  Enhanced radionuclide immobilization and flow path modifications by dissolution and secondary precipitates. , 2005, Journal of environmental quality.

[7]  Wim Vanroose,et al.  Accuracy of Hybrid Lattice Boltzmann / Finite Difference Schemes for Reaction-Diffusion Systems , 2006 .

[8]  John H. Cushman,et al.  A Renormalization Group Classification of Nonstationary and/or Infinite Second Moment Diffusive Processes , 2012 .

[9]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[10]  Daniel M. Tartakovsky,et al.  Transient flow in bounded randomly heterogeneous domains: 1. Exact conditional moment equations and recursive approximations , 1998 .

[11]  Cass T. Miller,et al.  Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and Transport Phenomena in Porous Medium Systems: 5. Single-Fluid-Phase Transport. , 2009, Advances in water resources.

[12]  John H. Cushman,et al.  Proofs of the volume averaging theorems for multiphase flow , 1982 .

[13]  Michel Quintard,et al.  Biofilms in porous media: Development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions , 2009 .

[14]  R. Christensen,et al.  Theory of Viscoelasticity , 1971 .

[15]  Ralph E. White,et al.  Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells , 2004 .

[16]  Daniel O'Malley,et al.  Two-scale renormalization-group classification of diffusive processes. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Henning Prommer,et al.  Modelling the fate of oxidisable organic contaminants in groundwater. In C. T. Miller, M. B. Parlange, and S. M. Hassanizadeh (editors), , 2002 .

[18]  Brian Berkowitz,et al.  Theory of anomalous chemical transport in random fracture networks , 1998 .

[19]  James M. Caruthers,et al.  Viscoelastic properties of dodecane/polystyrene systems , 1993 .

[20]  Pawan Singh Takhar,et al.  Unsaturated fluid transport in swelling poroviscoelastic biopolymers , 2014 .

[21]  M. Wheeler,et al.  Coupling Different Numerical Algorithms for Two Phase Fluid Flow , 2000 .

[22]  William G. Gray,et al.  Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 9. Transition region models , 2012 .

[23]  Dirk E. Maier,et al.  Thermomechanics of Swelling Biopolymeric Systems , 2003 .

[24]  T. B. Anderson,et al.  Fluid Mechanical Description of Fluidized Beds. Equations of Motion , 1967 .

[25]  Jose Alvarez-Ramirez,et al.  Upscaling pollutant dispersion in the Mexico City Metropolitan Area , 2012 .

[26]  Stanley Middleman,et al.  Flow of Viscoelastic Fluids through Porous Media , 1967 .

[27]  Keith J. Wojciechowski,et al.  Analysis and numerical solution of nonlinear Volterra partial integrodifferential equations modeling swelling porous materials , 2011 .

[28]  Daniel M. Tartakovsky,et al.  Erratum: Transient flow in bounded randomly heterogeneous domains, 1, Exact conditional moment equations and recursive approximations (Water Resources Research (1998) 34:1 (1-12)) , 1999 .

[29]  Cass T. Miller,et al.  Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview , 2005 .

[30]  A. Bedford,et al.  A Continuum Theory of Fluid Saturated Porous Media , 1971 .

[31]  Ilenia Battiato,et al.  Single‐parameter model of vegetated aquatic flows , 2014 .

[32]  Cass T. Miller,et al.  A multiphase model for three-dimensional tumor growth , 2013, New journal of physics.

[33]  John C. Slattery,et al.  Advanced transport phenomena , 1999 .

[34]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[35]  John H. Cushman,et al.  Three scale thermomechanical theory for swelling biopolymeric systems , 2003 .

[36]  T. Giorgi Derivation of the Forchheimer Law Via Matched Asymptotic Expansions , 1997 .

[37]  S. M. Hassanizadeh,et al.  Inclusion of Dynamic Capillary Pressure in Unsaturated Flow Simulators , 2001 .

[38]  John H. Cushman,et al.  Multiscale, hybrid mixture theory for swelling systems—I: balance laws , 1996 .

[39]  R. M. Bowen Part I – Theory of Mixtures , 1976 .

[40]  L. Schwartz Théorie des distributions , 1966 .

[41]  Karsten E. Thompson,et al.  Effect of Network Structure on Characterization and Flow Modeling Using X-ray Micro-Tomography Images of Granular and Fibrous Porous Media , 2011 .

[42]  J. Newman,et al.  Thermal Modeling of Porous Insertion Electrodes , 2003 .

[43]  Francisco J. Valdés-Parada,et al.  Volume averaging: Local and nonlocal closures using a Green’s function approach , 2013 .

[44]  Howard Brenner,et al.  Dispersion of a chemically reactive solute in a spatially periodic model of a porous medium , 1988 .

[45]  Jacob Bear,et al.  Modeling Phenomena of Flow and Transport in Porous Media , 2018 .

[46]  Michel Quintard,et al.  Transport in ordered and disordered porous media II: Generalized volume averaging , 1994 .

[47]  J. Morse,et al.  The dissolution kinetics of major sedimentary carbonate minerals , 2002 .

[48]  William G. Gray,et al.  High velocity flow in porous media , 1987 .

[49]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[50]  A. Green,et al.  Constitutive equations for interacting continua , 1966 .

[51]  W M Lai,et al.  A triphasic theory for the swelling and deformation behaviors of articular cartilage. , 1991, Journal of biomechanical engineering.

[52]  John H. Cushman,et al.  On unifying the concepts of scale, instrumentation, and stochastics in the development of multiphase transport theory , 1984 .

[53]  Elliott W. Montroll,et al.  Random walks on lattices. IV. Continuous-time walks and influence of absorbing boundaries , 1973 .

[54]  Alexandre M. Tartakovsky,et al.  Hydrodynamic dispersion in thin channels with micro-structured porous walls , 2018, Physics of Fluids.

[55]  C. Oskay,et al.  Spatial–temporal nonlocal homogenization model for transient anti-plane shear wave propagation in periodic viscoelastic composites , 2018, Computer Methods in Applied Mechanics and Engineering.

[56]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials , 1989 .

[57]  Ilenia Battiato,et al.  Universal scaling-law for flow resistance over canopies with complex morphology , 2018, Scientific Reports.

[58]  Pawan Singh Takhar,et al.  Hybrid mixture theory based moisture transport and stress development in corn kernels during drying: Coupled fluid transport and stress equations , 2011 .

[59]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[60]  Claude Boutin,et al.  Filtration Law in Porous Media with Poor Separation of Scales , 2005 .

[61]  Matthew B. Pinson,et al.  Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction , 2012, 1210.3672.

[62]  Wei Lai,et al.  Derivation of Micro/Macro Lithium Battery Models from Homogenization , 2011 .

[63]  Michel Quintard,et al.  Transport in ordered and disordered porous media V: Geometrical results for two-dimensional systems , 1994 .

[64]  F. Farassat,et al.  Discontinuities in aerodynamics and aeroacoustics: The concept and applications of generalized derivatives , 1977 .

[65]  Benjamin J. Rostron,et al.  Multiphase Flow in Permeable Media. A Pore-Scale Perspective , 2018, Groundwater.

[66]  Miroslav Grmela,et al.  Multiscale Mesoscopic Entropy of Driven Macroscopic Systems , 2013, Entropy.

[67]  Freek Kapteijn,et al.  Shouldn’t catalysts shape up?: Structured reactors in general and gas–liquid monolith reactors in particular , 2006 .

[68]  Dionissios T. Hristopulos,et al.  Stochastic Diagrammatic Analysis of Groundwater Flow in Heterogeneous Porous Media , 1995 .

[69]  Howard Brenner,et al.  Taylor dispersion of chemically reactive species: Irreversible first-order reactions in bulk and on boundaries , 1986 .

[70]  Daniel M. Tartakovsky,et al.  Noise propagation in hybrid models of nonlinear systems: The Ginzburg-Landau equation , 2014, J. Comput. Phys..

[71]  P. King The use of renormalization for calculating effective permeability , 1989 .

[72]  Philippe Lucarelli,et al.  Thermodynamically constrained averaging theory for cancer growth modelling , 2016 .

[73]  K. Wilson The renormalization group and critical phenomena , 1983 .

[74]  R. Maxwell,et al.  A comparison of two physics-based numerical models for simulating surface water–groundwater interactions , 2010 .

[75]  John H. Cushman,et al.  Multiscale fluid transport theory for swelling biopolymers , 2003 .

[76]  Didier Lasseux,et al.  An improved macroscale model for gas slip flow in porous media , 2016, Journal of Fluid Mechanics.

[77]  Václav Klika,et al.  Beyond Onsager-Casimir Relations: Shared Dependence of Phenomenological Coefficients on State Variables. , 2018, The journal of physical chemistry letters.

[78]  Alberto Salvadori,et al.  A computational homogenization approach for Li-ion battery cells : Part 1 – formulation , 2014 .

[79]  Cass T. Miller,et al.  Averaging Theory for Description of Environmental Problems: What Have We Learned? , 2013, Advances in water resources.

[80]  William G. Gray,et al.  Thermodynamically Constrained Averaging Theory Approach for Heat Transport in Single-Fluid-Phase Porous Medium Systems , 2009 .

[81]  Daniel M. Tartakovsky,et al.  Algorithm refinement for stochastic partial differential equations: II. Correlated systems , 2005 .

[82]  Lynn Schreyer-Bennethum,et al.  Theory of flow and deformation of swelling porous materials at the macroscale , 2007 .

[83]  Brian D. Wood,et al.  Review of Upscaling Methods for Describing Unsaturated Flow , 2000 .

[84]  Alexandre M. Tartakovsky,et al.  Dispersion controlled by permeable surfaces: surface properties and scaling , 2016, Journal of Fluid Mechanics.

[85]  Daniel M. Tartakovsky,et al.  Diffusion in Porous Media: Phenomena and Mechanisms , 2019, Transport in Porous Media.

[86]  A. Leijnse,et al.  Transport modeling of nonlinearly adsorbing solutes in physically heterogeneous pore networks , 2005 .

[87]  Daniel M. Tartakovsky,et al.  Hybrid models of reactive transport in porous and fractured media , 2011 .

[88]  Daniel M. Tartakovsky,et al.  Role of glycocalyx in attenuation of shear stress on endothelial cells: From in vivo experiments to microfluidic circuits , 2017, 2017 European Conference on Circuit Theory and Design (ECCTD).

[89]  Ilenia Battiato,et al.  Homogenizability conditions for multicomponent reactive transport , 2013 .

[90]  Dionissios T. Hristopulos,et al.  Stochastic Radon operators in porous media hydrodynamics , 1997 .

[91]  N. Kikuchi,et al.  Homogenization theory and digital imaging: A basis for studying the mechanics and design principles of bone tissue , 1994, Biotechnology and bioengineering.

[92]  Louis J. Durlofsky,et al.  Analysis of the Brinkman equation as a model for flow in porous media , 1987 .

[93]  Gilberto Espinosa-Paredes,et al.  Numerical simulation of a tubular solar reactor for methane cracking , 2011 .

[94]  G. Taylor Dispersion of soluble matter in solvent flowing slowly through a tube , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[95]  Dionissios T. Hristopulos,et al.  Renormalization group methods in subsurface hydrology: overview and applications in hydraulic conductivity upscaling , 2003 .

[96]  M. Gell-Mann,et al.  QUANTUM ELECTRODYNAMICS AT SMALL DISTANCES , 1954 .

[97]  Cass T. Miller,et al.  TCAT Analysis of Capillary Pressure in Non-equilibrium, Two-fluid-phase, Porous Medium Systems. , 2011, Advances in water resources.

[98]  Jose Alvarez-Ramirez,et al.  A volume averaging approach for asymmetric diffusion in porous media. , 2011, The Journal of chemical physics.

[99]  Malte A. Peter,et al.  Homogenisation in domains with evolving microstructure , 2007 .

[100]  Pawan Singh Takhar,et al.  NMR imaging of continuous and intermittent drying of pasta , 2007 .

[101]  Ludwig C. Nitsche,et al.  Eulerian kinematics of flow through spatially periodic models of porous media , 1989 .

[102]  S Karra,et al.  Where Does Water Go During Hydraulic Fracturing? , 2016, Ground water.

[103]  Kamyar Haghighi,et al.  Effect of viscoelastic relaxation on moisture transport in foods. Part I: Solution of general transport equation , 2004, Journal of mathematical biology.

[104]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[105]  Simone Wannemaker Porous Media Theory Experiments And Numerical Applications , 2016 .

[106]  Neima Brauner,et al.  Modeling of core-annular and plug flows of Newtonian/non-Newtonian shear-thinning fluids in pipes and capillary tubes , 2018, International Journal of Multiphase Flow.

[107]  Dirk E. Maier,et al.  Hybrid mixture theory based moisture transport and stress development in corn kernels during drying: Validation and simulation results , 2011 .

[108]  Pawan Singh Takhar,et al.  Freezing of Foods: Mathematical and Experimental Aspects , 2017, Food Engineering Reviews.

[109]  Pierre M. Adler,et al.  Coupled transport and dispersion of multicomponent reactive solutes in rectilinear flows , 1996 .

[110]  S. Whitaker Diffusion and dispersion in porous media , 1967 .

[111]  Jean-Louis Auriault,et al.  On the Domain of Validity of Brinkman’s Equation , 2009 .

[112]  Giulio C. Sarti,et al.  A class of mathematical models for sorption of swelling solvents in glassy polymers , 1978 .

[113]  Simona Onori,et al.  Multiscale modeling approach to determine effective lithium-ion transport properties , 2017, 2017 American Control Conference (ACC).

[114]  C. Alvarado,et al.  Transport Mechanisms and Quality Changes During Frying of Chicken Nuggets--Hybrid Mixture Theory Based Modeling and Experimental Verification. , 2015, Journal of food science.

[115]  Pawan Singh Takhar,et al.  Experimental study on transport mechanisms during deep fat frying of chicken nuggets , 2013 .

[116]  Cass T. Miller,et al.  Multiphase flow and transport modeling in heterogeneous porous media: challenges and approaches , 1998 .

[117]  Noreen L. Thomas,et al.  A theory of case II diffusion , 1982 .

[118]  Marina G. Semenenko Application effective medium approximation approach for economic researching , 2003 .

[119]  Daniel M. Tartakovsky,et al.  Effective Ion Diffusion in Charged Nanoporous Materials , 2017 .

[120]  William G. Gray,et al.  General conservation equations for multi-phase systems: 1. Averaging procedure , 1979 .

[121]  Yohan Davit,et al.  Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare? , 2013 .

[122]  Philippe C. Baveye,et al.  The Operational Significance of the Continuum Hypothesis in the Theory of Water Movement Through Soils and Aquifers , 1984 .

[123]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986 .

[124]  Ronald B. Guenther,et al.  Equations of motion and continuity for fluid flow in a porous medium , 1971 .

[125]  Francisco J. Valdés-Parada,et al.  On the developments of Darcy's law to include inertial and slip effects , 2017 .

[126]  Andrey L. Piatnitski,et al.  Homogenization of a Nonlinear Convection‐Diffusion Equation with Rapidly Oscillating Coefficients and Strong Convection , 2005 .

[127]  William G. Gray,et al.  General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations , 1979 .

[128]  S. Whitaker The method of volume averaging , 1998 .

[129]  Pawan S Takhar,et al.  Microstructural Characterization of Fried Potato Disks Using X-Ray Micro Computed Tomography. , 2016, Journal of food science.

[130]  Michel Quintard,et al.  Averaged Momentum Equation for Flow Through a Nonhomogenenous Porous Structure , 1997 .

[131]  Oono,et al.  Renormalization-group theory for the modified porous-medium equation. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[132]  Bruce J. West,et al.  Fractal physiology , 1994, IEEE Engineering in Medicine and Biology Magazine.

[133]  Daniel M. Tartakovsky,et al.  Algorithm refinement for stochastic partial differential equations: I. linear diffusion , 2002 .

[134]  Daniel M. Tartakovsky,et al.  Perspective on theories of non-Fickian transport in heterogeneous media , 2009 .

[135]  V. Veverka,et al.  Theorem for the local volume average of a gradient revised , 1981 .

[136]  Brian D. Wood,et al.  The role of scaling laws in upscaling , 2009 .

[137]  Jacob A. Moulijn,et al.  Structured Packings for Multiphase Catalytic Reactors , 2008 .

[138]  John H. Cushman,et al.  Macroscale Thermodynamics and the Chemical Potential for Swelling Porous Media , 1997 .

[139]  S. P. Neuman,et al.  Conditional stochastic averaging of steady state unsaturated flow by means of Kirchhoff Transformation , 1999 .

[140]  William G. Gray,et al.  On the theorems for local volume averaging of multiphase systems , 1977 .

[141]  Prabhakar R. Bandaru,et al.  The response of carbon nanotube ensembles to fluid flow: Applications to mechanical property measurement and diagnostics , 2009 .

[142]  Simona Onori,et al.  On Veracity of Macroscopic Lithium-Ion Battery Models , 2015 .

[143]  H. Brinkman A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles , 1949 .

[144]  J. B. Litchfield,et al.  Three-dimensional microscopic MRI of maize kernels during drying , 1992 .

[145]  Pierre M. Adler,et al.  Taylor dispersion in porous media: analysis by multiple scale expansions , 1995 .

[146]  Charles-Michel Marle,et al.  On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media , 1982 .

[147]  S. Whitaker Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying , 1977 .

[148]  Jens Groot,et al.  State-of-Health Estimation of Li-ion Batteries: Cycle Life Test Methods , 2012 .

[149]  S. Whitaker,et al.  The spatial averaging theorem revisited , 1985 .

[150]  Timothy D. Scheibe,et al.  Simulations of reactive transport and precipitation with smoothed particle hydrodynamics , 2007, J. Comput. Phys..

[151]  Christopher E. Kees,et al.  Thermodynamically Constrained Averaging Theory: Principles, Model Hierarchies, and Deviation Kinetic Energy Extensions , 2018, Entropy.

[152]  Tong Hui,et al.  A nonlocal homogenization model for wave dispersion in dissipative composite materials , 2013 .

[153]  William G. Gray,et al.  Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems , 2014 .

[154]  Jiří Mls,et al.  On the existence of the derivative of the volume average , 1987 .

[155]  Erlend Finden,et al.  A Homogenized Thermal Model For Lithium Ion Batteries , 2012 .

[156]  M Ferrari,et al.  Tumor growth modeling from the perspective of multiphase porous media mechanics. , 2012, Molecular & cellular biomechanics : MCB.

[157]  Caglar Oskay,et al.  Multiscale nonlocal effective medium model for in-plane elastic wave dispersion and attenuation in periodic composites , 2019, Journal of the Mechanics and Physics of Solids.

[158]  S. Spagnolo,et al.  Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche , 1968 .

[159]  Ilenia Battiato,et al.  Sequential Homogenization of Reactive Transport in Polydisperse Porous Media , 2016, Multiscale Model. Simul..

[160]  Donald F. Proctor,et al.  The Pathway for Oxygen, Structure, and Function in the Mammalian Respiratory System , 2015 .

[161]  Cass T. Miller,et al.  Pore-scale investigation of viscous coupling effects for two-phase flow in porous media. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[162]  Xuemei Zhao,et al.  A High Precision Coulometry Study of the SEI Growth in Li/Graphite Cells , 2011 .

[163]  T. Teichmann,et al.  Generalized Functions and Partial Differential Equations , 2005 .

[164]  Daniel M. Tartakovsky,et al.  Algorithm refinement for stochastic partial differential equations. , 2003 .

[165]  Michel Quintard,et al.  Transport in ordered and disordered porous media IV: Computer generated porous media for three-dimensional systems , 1994 .

[166]  Malte A. Peter,et al.  Coupled reaction–diffusion processes inducing an evolution of the microstructure: Analysis and homogenization , 2009 .

[167]  Daniel M Tartakovsky,et al.  Elastic response of carbon nanotube forests to aerodynamic stresses. , 2010, Physical review letters.

[168]  H. E. Stanley,et al.  Inertial Effects on Fluid Flow through Disordered Porous Media , 1999 .

[169]  Daniel M. Tartakovsky,et al.  Transient flow in bounded randomly heterogeneous domains: 2. Localization of conditional mean equations and temporal nonlocality effects , 1998 .

[170]  A. Cemal Eringen,et al.  Mechanics of continua , 1967 .

[171]  R. Aris On the dispersion of a solute in a fluid flowing through a tube , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[172]  Ilenia Battiato,et al.  Physics-based hybrid method for multiscale transport in porous media , 2017, J. Comput. Phys..

[173]  Andro Mikelić,et al.  The derivation of a nonlinear filtration law including the inertia effects via homogenization , 2000 .

[174]  William G. Gray,et al.  Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 2. Foundation , 2005 .

[175]  John H. Cushman,et al.  Dynamics of fluids in hierarchical porous media , 1990 .

[176]  Michel Quintard,et al.  Calculation of effective diffusivities for biofilms and tissues , 2002, Biotechnology and bioengineering.

[177]  D M Tartakovsky,et al.  Applicability regimes for macroscopic models of reactive transport in porous media. , 2011, Journal of contaminant hydrology.

[178]  Xiaoliang He,et al.  A comparison of measured and modeled velocity fields for a laminar flow in a porous medium , 2015 .

[179]  Michel Quintard,et al.  Transport in ordered and disordered porous media III: Closure and comparison between theory and experiment , 1994 .

[180]  Matthew T. Balhoff,et al.  Hybrid Multiscale Modeling through Direct Substitution of Pore-Scale Models into Near-Well Reservoir Simulators , 2012 .

[181]  Freek Kapteijn,et al.  Process intensification of tubular reactors: Considerations on catalyst hold-up of structured packings , 2013 .

[182]  G. Temple The theory of generalized functions , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[183]  Sourabh V. Apte,et al.  Modeling Turbulent Flows in Porous Media , 2020, Annual Review of Fluid Mechanics.

[184]  Marc Doyle,et al.  The Use of Mathematical-Modeling in the Design of Lithium Polymer Battery Systems , 1995 .

[185]  John H. Cushman,et al.  A primer on upscaling tools for porous media , 2002 .

[186]  John H. Cushman,et al.  Multiscale, hybrid mixture theory for swelling systems—II: constitutive theory , 1996 .

[187]  S. Whitaker The Forchheimer equation: A theoretical development , 1996 .

[188]  William G. Gray,et al.  On the dynamics and kinematics of two‐fluid‐phase flow in porous media , 2015 .

[189]  Michel Quintard,et al.  Technical Notes on Volume Averaging in Porous Media I: How to Choose a Spatial Averaging Operator for Periodic and Quasiperiodic Structures , 2017, Transport in Porous Media.

[190]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986, Physical review letters.

[191]  Noreen L. Thomas,et al.  A deformation model for Case II diffusion , 1980 .

[192]  Martin R. Okos,et al.  Moisture transport in shrinking gels during saturated drying , 1997 .

[193]  Stephen Whitaker,et al.  A Simple Geometrical Derivation of the Spatial Averaging Theorem. , 1985 .

[194]  Cass T Miller,et al.  Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and Transport Phenomena in Porous Medium Systems: 7. Single-Phase Megascale Flow Models. , 2009, Advances in water resources.

[195]  Dionissios T. Hristopulos,et al.  Renormalization group analysis of permeability upscaling , 1999 .

[196]  Jinhai Chen,et al.  WELL-POSEDNESS AND NUMERICAL SOLUTION OF A NONLINEAR VOLTERRA PARTIAL INTEGRO-DIFFERENTIAL EQUATION MODELING A SWELLING POROUS MATERIAL , 2014 .

[197]  S. P. Neuman,et al.  Theoretical derivation of Darcy's law , 1977 .

[198]  M. Hubbert,et al.  DARCY'S LAW AND THE FIELD EQUATIONS OF THE FLOW OF UNDERGROUND FLUIDS , 1956 .

[199]  Peter C. Lichtner,et al.  On the upscaling of reaction-transport processes in porous media with fast or finite kinetics , 2002 .

[200]  Marijan Ahel,et al.  [Organic contaminants in the Jakusevec landfill and their impact on groundwater quality]. , 2006, Arhiv za higijenu rada i toksikologiju.

[201]  Cass T. Miller,et al.  Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and Transport Phenomena in Porous Medium Systems: 8. Interface and Common Curve Dynamics. , 2010, Advances in water resources.

[202]  Pawan Singh Takhar,et al.  Hybrid mixture theory based modeling of transport mechanisms and expansion-thermomechanics of starch during extrusion , 2015 .

[203]  Martin R. Okos,et al.  On multicomponent, multiphase thermomechanics with interfaces , 1994 .

[204]  Cass T. Miller,et al.  A Pedagogical Approach to the Thermodynamically Constrained Averaging Theory , 2017, Transport in Porous Media.

[205]  William G. Gray,et al.  A generalization of averaging theorems for porous medium analysis , 2013 .

[206]  Timothy D. Scheibe,et al.  Downscaling‐Based Segmentation for Unresolved Images of Highly Heterogeneous Granular Porous Samples , 2018 .

[207]  Václav Klika,et al.  Functional constraints on phenomenological coefficients. , 2017, Physical review. E.

[208]  R. Kanwal Generalized Functions: Theory and Technique , 1998 .

[209]  H. Brenner,et al.  Transport processes in porous media , 1986 .

[210]  Andro Mikelic,et al.  Rigorous Upscaling of the Reactive Flow through a Pore, under Dominant Peclet and Damkohler Numbers , 2006, SIAM J. Math. Anal..

[211]  William G. Gray,et al.  Modeling two-fluid-phase flow and species transport in porous media , 2015 .

[212]  U. Hornung Homogenization and porous media , 1996 .

[213]  Marcel Crochet,et al.  ON CONSTITUTIVE EQUATIONS FOR FLOW OF FLUID THROUGH AN ELASTIC SOLID. , 1966 .

[214]  Daniel M. Tartakovsky,et al.  On breakdown of macroscopic models of mixing-controlled heterogeneous reactions in porous media , 2009 .

[215]  Pierre M. Adler,et al.  Porous media : geometry and transports , 1992 .

[216]  Daniel M. Tartakovsky,et al.  Optimal design of nanoporous materials for electrochemical devices , 2017 .

[217]  John H. Cushman,et al.  Fickian dispersion is anomalous , 2015 .

[218]  Thérèse Lévy Fluid flow through an array of fixed particles , 1983 .

[219]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[220]  Ilenia Battiato,et al.  Vertical dispersion in vegetated shear flows , 2016 .

[221]  Dionissios T. Hristopulos,et al.  Diagrammatic theory of effective hydraulic conductivity , 1997 .

[222]  Cass T. Miller,et al.  A Priori Parameter Estimation for the Thermodynamically Constrained Averaging Theory: Species Transport in a Saturated Porous Medium , 2018, Transport in Porous Media.

[223]  Mecit Halil Oztop,et al.  Using multi-slice-multi-echo images with NMR relaxometry to assess water and fat distribution in coated chicken nuggets , 2014 .

[224]  S. Whitaker Flow in porous media I: A theoretical derivation of Darcy's law , 1986 .

[225]  John H. Cushman,et al.  Multiphase transport equations: I - general equation for macroscopic statistical, local space-time homogeneity1 , 1983 .

[226]  Kumbakonam R. Rajagopal,et al.  Mechanics of Mixtures , 1995 .

[227]  MARIA BRUNA,et al.  Diffusion in Spatially Varying Porous Media , 2015, SIAM J. Appl. Math..

[228]  Václav Klika,et al.  A Guide through Available Mixture Theories for Applications , 2014 .

[229]  Pawan Singh Takhar,et al.  Modeling multiscale transport mechanisms, phase changes and thermomechanics during frying , 2014 .