Over-expression of Mycobacterium neoaurum 3-ketosteroid-Δ1-dehydrogenase in Corynebacterium crenatum for efficient bioconversion of 4-androstene-3,17-dione to androst-1,4-diene-3,17-dione

[1]  Z. Rao,et al.  Enhanced Production of Androst-1,4-Diene-3,17-Dione by Mycobacterium neoaurum JC-12 Using Three-Stage Fermentation Strategy , 2015, PloS one.

[2]  Shangtian Yang,et al.  Efficient Whole-Cell Biocatalyst for Acetoin Production with NAD+ Regeneration System through Homologous Co-Expression of 2,3-Butanediol Dehydrogenase and NADH Oxidase in Engineered Bacillus subtilis , 2014, PloS one.

[3]  D. Wei,et al.  Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols. , 2014, Metabolic engineering.

[4]  D. Munday,et al.  The Real-World Problem of Care Coordination: A Longitudinal Qualitative Study with Patients Living with Advanced Progressive Illness and Their Unpaid Caregivers , 2014, BMC Health Services Research.

[5]  B. Dijkstra,et al.  Crystal Structure and Site-directed Mutagenesis of 3-Ketosteroid Δ1-Dehydrogenase from Rhodococcus erythropolis SQ1 Explain Its Catalytic Mechanism* , 2013, The Journal of Biological Chemistry.

[6]  Z. Rao,et al.  Bioconversion of 4-androstene-3,17-dione to androst-1,4-diene-3,17-dione by recombinant Bacillus subtilis expressing ksdd gene encoding 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum JC-12 , 2013, The Journal of Steroid Biochemistry and Molecular Biology.

[7]  O. Drzyzga,et al.  Molecular characterization of three 3-ketosteroid-Δ1-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4 , 2012, The Journal of Steroid Biochemistry and Molecular Biology.

[8]  B. Dijkstra,et al.  Purification, crystallization and preliminary X-ray crystallographic analysis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1. , 2012, Acta crystallographica. Section F, Structural biology and crystallization communications.

[9]  E. Maser,et al.  Hydroxysteroid dehydrogenases (HSDs) in bacteria – A bioinformatic perspective , 2012, The Journal of Steroid Biochemistry and Molecular Biology.

[10]  Z. Rao,et al.  Enhanced Production of l-Arginine by Expression of Vitreoscilla Hemoglobin Using a Novel Expression System in Corynebacterium crenatum , 2011, Applied biochemistry and biotechnology.

[11]  D. Wei,et al.  Inactivation and Augmentation of the Primary 3-Ketosteroid-Δ1- Dehydrogenase in Mycobacterium neoaurum NwIB-01: Biotransformation of Soybean Phytosterols to 4-Androstene- 3,17-Dione or 1,4-Androstadiene-3,17-Dione , 2010, Applied and Environmental Microbiology.

[12]  L. Dijkhuizen,et al.  3-Keto-5alpha-steroid Delta(1)-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism. , 2008, The Biochemical journal.

[13]  M. Faramarzi,et al.  Metabolism of androst-4-en-3,17-dione by the filamentous fungus Neurospora crassa , 2008, Steroids.

[14]  Yin-Ru Chiang,et al.  Cholest-4-En-3-One-Δ1-Dehydrogenase, a Flavoprotein Catalyzing the Second Step in Anoxic Cholesterol Metabolism , 2007, Applied and Environmental Microbiology.

[15]  Wenqing Zhang,et al.  Expression and purification of a recombinant antibacterial peptide, cecropin, from Escherichia coli. , 2007, Protein expression and purification.

[16]  R. Kondo,et al.  Steroid 9α‐Hydroxylation during Testosterone Degradation by Resting Rhodococcus equi Cells , 2007, Archiv der Pharmazie.

[17]  G. Sukhodolskaya,et al.  Steroid-1-dehydrogenase of Mycobacterium sp. VKM Ac-1817D strain producing 9α-hydroxy-androst-4-ene-3,17-dione from sitosterol , 2007, Applied Microbiology and Biotechnology.

[18]  Shouwen Chen,et al.  Microbial transformation of androst-4-ene-3,17-dione by Beauveria bassiana , 2006, Steroids.

[19]  F. Jeanplong,et al.  Generation of Useful Insertionally Blocked Sterol Degradation Pathway Mutants of Fast-Growing Mycobacteria and Cloning, Characterization, and Expression of the Terminal Oxygenase of the 3-Ketosteroid 9α-Hydroxylase in Mycobacterium smegmatis mc2155 , 2006, Applied and Environmental Microbiology.

[20]  I. F. Puntus,et al.  Mycobacterium sp. mutant strain producing 9α-hydroxyandrostenedione from sitosterol , 2005, Applied Microbiology and Biotechnology.

[21]  I. Molnár,et al.  Secretory overproduction of Arthrobacter simplex 3-ketosteroid Δ1-dehydrogenase by Streptomyces lividans with a multi-copy shuttle vector , 1995, Applied Microbiology and Biotechnology.

[22]  A. Tanaka,et al.  9α-Hydroxylation of 4-androstene-3,17-dione by gel-entrapped Corynebacterium sp. cells , 1983, European journal of applied microbiology and biotechnology.

[23]  P. Fernandes,et al.  Microbial conversion of steroid compounds: recent developments , 2003 .

[24]  N. Z. Adham,et al.  Biochemical studies on the microbial Δ1-dehydrogenation of cortisol by Pseudomonas fluorescens , 2003 .

[25]  R.,et al.  Mechanisms of Steroid Oxidation by Microorganisms , 2003 .

[26]  J. Kalinowski,et al.  Efficient Electrotransformation of Corynebacterium diphtheriae with a Mini-Replicon Derived from the Corynebacterium glutamicum Plasmid pGA1 , 2002, Current Microbiology.

[27]  L. Dijkhuizen,et al.  Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Delta(1)-dehydrogenase isoenzyme. , 2002, Microbiology.

[28]  L. Dijkhuizen,et al.  Molecular and functional characterization of kshA and kshB, encoding two components of 3‐ketosteroid 9α‐hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1 , 2002, Molecular microbiology.

[29]  L. Dijkhuizen,et al.  Targeted Disruption of the kstD Gene Encoding a 3-Ketosteroid Δ1-Dehydrogenase Isoenzyme ofRhodococcus erythropolis Strain SQ1 , 2000, Applied and Environmental Microbiology.

[30]  Yvan Le Huérou,et al.  The microbiological hydroxylation of 3α,5-cycloandrostanes by Cephalosporium aphidicola , 1999 .

[31]  M. Iwami,et al.  3-Ketosteroid-Δ1-Dehydrogenase of Rhodococcus rhodochrous: Sequencing of the Genomic DNA and Hyperexpression, Purification, and Characterization of the Recombinant Enzyme , 1998 .

[32]  S. Mahato,et al.  Advances in microbial steroid biotransformation , 1997, Steroids.

[33]  I. Molnár,et al.  Purification and characterization of the 3-ketosteroid-delta 1-dehydrogenase of Arthrobacter simplex produced in Streptomyces lividans. , 1995, Journal of biochemistry.

[34]  S. Harayama,et al.  Cloning, sequencing, and expression of the Pseudomonas testosteroni gene encoding 3-oxosteroid delta 1-dehydrogenase , 1991, Journal of bacteriology.

[35]  E. Itagaki,et al.  Purification and characterization of 3-ketosteroid-delta 1-dehydrogenase from Nocardia corallina. , 1990, Biochimica et biophysica acta.

[36]  M. K. Roy,et al.  Steroid transformations by a strain of Arthrobacter oxydans incapable of steroid ring degradation , 1989 .

[37]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[38]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[39]  C. Sih,et al.  MECHANISMS OF STEROID OXIDATION BY MICROORGANISMS. 7. PROPERTIES OF THE 9-ALPHA-HYDROXYLASE. , 1964, Biochemistry.

[40]  C. Sih Mechanisms of steroid oxidation by microorganisms. , 1962, Biochimica et biophysica acta.