FLUID FLOW IN NANOPORES: ACCURATE BOUNDARY CONDITIONS FOR CARBON NANOTUBES

Steady-state Poiseuille flow of a simple fluid in carbon nanopores under a gravitylike force is simulated using a realistic empirical many-body potential model for carbon. Building on our previous study of slit carbon nanopores we show that fluid flow in a nanotube is also characterized by a large slip length. By analyzing temporal profiles of the velocity components of particles colliding with the wall we obtain values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall and, for the first time, propose slip boundary conditions for smooth continuum surfaces such that they are equivalent in adsorption, diffusion, and fluid flow properties to fully dynamic atomistic models.

[1]  William A. Steele,et al.  The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms☆ , 1973 .

[2]  V. D. Sobolev,et al.  Slippage of liquids over lyophobic solid surfaces , 1984 .

[3]  J. Mann,et al.  Molecule-micropore interaction potentials , 1988 .

[4]  W. Steele Molecular interactions for physical adsorption , 1993 .

[5]  K. Gubbins,et al.  Molecular Simulation of Fluid Adsorption in Buckytubes , 1995 .

[6]  Billy D. Todd,et al.  DEPARTURE FROM NAVIER-STOKES HYDRODYNAMICS IN CONFINED LIQUIDS , 1997 .

[7]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[8]  K. Ayappa,et al.  Density distributions of diatoms in carbon nanotubes: A grand canonical Monte Carlo study , 1998 .

[9]  W. Steele,et al.  Simulation studies of sorption in model cylindrical micropores , 1998 .

[10]  J. Banavar,et al.  No-Slip Condition for a Mixture of Two Liquids , 1998, cond-mat/9801304.

[11]  Lydéric Bocquet,et al.  Large Slip Effect at a Nonwetting Fluid-Solid Interface , 1999 .

[12]  A. Migone,et al.  Methane Adsorption on Planar WS2 and on WS2-Fullerene and -Nanotube Containing Samples , 2000 .

[13]  Keith E. Gubbins,et al.  Poiseuille flow of Lennard-Jones fluids in narrow slit pores , 2000 .

[14]  Susan B. Sinnott,et al.  A Computational Study of Molecular Diffusion and Dynamic Flow through Carbon Nanotubes , 2000 .

[15]  Richard M. Crooks,et al.  Single Carbon Nanotube Membranes: A Well-Defined Model for Studying Mass Transport through Nanoporous Materials , 2000 .

[16]  Donald W. Brenner,et al.  The Art and Science of an Analytic Potential , 2000 .

[17]  N. Kanellopoulos Recent advances in gas separation by microporous ceramic membranes , 2000 .

[18]  D. Williams,et al.  Shear-dependent boundary slip in an aqueous Newtonian liquid. , 2001, Physical review letters.

[19]  Kenneth A. Smith,et al.  In-plane-aligned membranes of carbon nanotubes , 2001 .

[20]  C. R. Martin,et al.  Investigations of the Transport Properties of Gold Nanotubule Membranes , 2001 .

[21]  J. Baudry,et al.  Experimental Evidence for a Large Slip Effect at a Nonwetting Fluid−Solid Interface , 2001 .

[22]  Nicholas Quirke,et al.  Fluid flow in nanopores: An examination of hydrodynamic boundary conditions , 2001 .

[23]  B. Hess Determining the shear viscosity of model liquids from molecular dynamics simulations , 2002 .

[24]  M. Monthioux Filling single-wall carbon nanotubes , 2002 .

[25]  D. Nicholson A simulation study of the pore size dependence of transport selectivity in cylindrical pores , 2002 .