Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings

The aim of this paper is to study a classical pseudo-monotone and non-Lipschitz continuous variational inequality problem in real Hilbert spaces. Weak and strong convergence theorems are presented under mild conditions. Our methods generalize and extend some related results in the literature and the main advantages of proposed algorithms there is no use of Lipschitz condition of the variational inequality associated mapping. Numerical illustrations in finite and infinite dimensional spaces illustrate the behaviors of the proposed schemes.

[1]  A. Moudafi Viscosity Approximation Methods for Fixed-Points Problems , 2000 .

[2]  C. Kanzow,et al.  Strong convergence of a double projection-type method for monotone variational inequalities in Hilbert spaces , 2018 .

[3]  S. Reich,et al.  Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings , 1984 .

[4]  S. Karamardian Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .

[5]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[6]  Duong Viet Thong,et al.  Inertial extragradient algorithms for strongly pseudomonotone variational inequalities , 2018, J. Comput. Appl. Math..

[7]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[8]  Yair Censor,et al.  The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space , 2011, J. Optim. Theory Appl..

[9]  Xiaolin Hu,et al.  Solving Pseudomonotone Variational Inequalities and Pseudoconvex Optimization Problems Using the Projection Neural Network , 2006, IEEE Transactions on Neural Networks.

[10]  C. Baiocchi,et al.  Variational and quasivariational inequalities: Applications to free boundary problems , 1983 .

[11]  A. Iusem,et al.  INEXACT VERSIONS OF PROXIMAL POINT AND AUGMENTED LAGRANGIAN ALGORITHMS IN BANACH SPACES , 2001 .

[12]  Yu. V. Malitsky,et al.  A hybrid method without extrapolation step for solving variational inequality problems , 2015, J. Glob. Optim..

[13]  A. Cegielski Iterative Methods for Fixed Point Problems in Hilbert Spaces , 2012 .

[14]  Yu. V. Malitsky,et al.  Projected Reflected Gradient Methods for Monotone Variational Inequalities , 2015, SIAM J. Optim..

[15]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[16]  Yair Censor,et al.  Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space , 2011, Optim. Methods Softw..

[17]  Jen-Chih Yao,et al.  Pseudo-monotone complementarity problems in Hilbert space , 1992 .

[18]  Yair Censor,et al.  Algorithms for the Split Variational Inequality Problem , 2010, Numerical Algorithms.

[19]  Dong Yun-da,et al.  A NOTE ON AN ITERATIVE ALGORITHM FOR THE VARIATIONAL INEQUALITY PROBLEM , 2003 .

[20]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[21]  M. Solodov,et al.  A New Projection Method for Variational Inequality Problems , 1999 .

[22]  A. Iusem,et al.  A variant of korpelevich’s method for variational inequalities with a new search strategy , 1997 .

[23]  Duong Viet Thong,et al.  Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems , 2018 .

[24]  Yiran He A new double projection algorithm for variational inequalities , 2006 .

[25]  P. Tseng,et al.  Modified Projection-Type Methods for Monotone Variational Inequalities , 1996 .

[26]  E. Khobotov Modification of the extra-gradient method for solving variational inequalities and certain optimization problems , 1989 .

[27]  Duong Viet Thong,et al.  Modified subgradient extragradient method for variational inequality problems , 2017, Numerical Algorithms.

[28]  Paul-Emile Maingé,et al.  A Hybrid Extragradient-Viscosity Method for Monotone Operators and Fixed Point Problems , 2008, SIAM J. Control. Optim..

[29]  Yair Censor,et al.  Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space , 2012 .

[30]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[31]  Duong Viet Thong,et al.  Weak and strong convergence theorems for variational inequality problems , 2017, Numerical Algorithms.

[32]  I. Konnov Combined Relaxation Methods for Variational Inequalities , 2000 .

[33]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[34]  Y. Shehu,et al.  Single projection method for pseudo-monotone variational inequality in Hilbert spaces , 2018, Optimization.

[35]  Yekini Shehu,et al.  Convergence of an extragradient-type method for variational inequality with applications to optimal control problems , 2018, Numerical Algorithms.

[36]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[37]  Hong-Kun Xu Iterative Algorithms for Nonlinear Operators , 2002 .

[38]  L. M. Chabak,et al.  Convergence of the Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators , 2015 .

[39]  Alfredo N. Iusem,et al.  Korpelevich’s method for variational inequality problems in Banach spaces , 2011, J. Glob. Optim..

[40]  P. Marcotte APPLICATION OF KHOBOTOVS ALGORITHM TO VARIATIONAL INEQUALITIES ANT) NETWORK EQUILIBRIUM PROBLEMS , 1991 .