Complexity of general continuous minimization problems: a survey

The problem of finding a local or a global minimum of a real function on a set S⊆ ℝ n occurs in many real world problems. When f is a general nonlinear function, deterministic as well as stochastic algorithms have been proposed. The numerical cost of these algorithms, that can be the number of function evaluations or the number of elementary operations required when executed, has been investigated in the last few years. In this paper, we survey the main results by classifying them according to the field they refer to: local minimization, global minimization and checking the optimality conditions. Further, some results concerning the information that an algorithm may use, are surveyed.

[1]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[2]  Robert L. Smith,et al.  Pure adaptive search in global optimization , 1992, Math. Program..

[3]  Mihir Bellare,et al.  The complexity of approximating a nonlinear program , 1995, Math. Program..

[4]  Joseph F. Traub,et al.  Complexity and information , 1999, Lezioni Lincee.

[5]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[6]  Birna P. Kristinsdottir,et al.  Hesitant adaptive search: the distribution of the number of iterations to convergence , 2001, Math. Program..

[7]  Fabio Schoen,et al.  Minimal interatomic distance in Morse clusters , 2002, J. Glob. Optim..

[8]  Robert L. Smith,et al.  Pure adaptive search in monte carlo optimization , 1989, Math. Program..

[9]  S. Vavasis COMPLEXITY ISSUES IN GLOBAL OPTIMIZATION: A SURVEY , 1995 .

[10]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[11]  Marco Gaviano,et al.  A Complexity Analysis of Local Search Algorithms in Global Optimization , 2002, Optim. Methods Softw..

[12]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[13]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[14]  P. Pardalos Complexity in numerical optimization , 1993 .

[15]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[16]  T. Illés,et al.  Entropy and Young programs: relations and self-concordance , 2002 .

[17]  L. A. Pilipchuk,et al.  Network optimization problems , 2002 .

[18]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[19]  C. Stephens,et al.  Global Optimization Requires Global Information , 1998 .

[20]  H. Woxniakowski Information-Based Complexity , 1988 .

[21]  Stephen A. Vavasis,et al.  Black-Box Complexity of Local Minimization , 1993, SIAM J. Optim..

[22]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[23]  S. Vavasis Nonlinear optimization: complexity issues , 1991 .

[24]  H. Zimmermann Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .

[25]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[26]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[27]  Panos M. Pardalos Approximation and Complexity in Numerical Optimization , 2000 .

[28]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[29]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[30]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.