There and back again: using fréchet-distance diagrams to find trajectory turning points

There is much interest in the automatic analysis of GPS trajectories, motivated amongst others by animal tracking, traffic modelling and tourism studies. Core questions involve for example detecting stopping points and flocking behaviour, and developing routing models. In this paper we consider turning points. We develop a formal definition of "turning point" based on analysing the structure of free-space diagrams for Fréchet distance. We give an efficient algorithm for computing an optimal set of turning points under this criterion. Our method is evaluated in the context of a current study on tourist preferences at Berchtesgaden National Park, Germany. We evaluate the suitability of our definition and the efficiency of our algorithm on a large set of real-world GPS trajectories collected by outdoor recreationists. A ground truth of turning points was established by hand for the complete data set. Experiments show that the runtime and quality of our method are suitable for practical applications.

[1]  B. Mckercher,et al.  Modeling Tourist Movements: A Local Destination Analysis , 2006 .

[2]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[3]  Maike Buchin,et al.  An algorithmic framework for segmenting trajectories based on spatio-temporal criteria , 2010, GIS '10.

[4]  Markus Schneider,et al.  Similarity measurement of moving object trajectories , 2012, IWGS '12.

[5]  D. Hosmer,et al.  Logistic Regression, Conditional , 2005 .

[6]  Xiaoting Huang,et al.  Intra-attraction Tourist Spatial-Temporal Behaviour Patterns , 2012 .

[7]  Joachim Gudmundsson,et al.  Algorithms for hotspot computation on trajectory data , 2013, SIGSPATIAL/GIS.

[8]  Joachim Gudmundsson,et al.  Detecting Commuting Patterns by Clustering Subtrajectories , 2011, Int. J. Comput. Geom. Appl..

[9]  Kevin Buchin,et al.  A framework for trajectory segmentation by stable criteria , 2014, SIGSPATIAL/GIS.

[10]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[11]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[12]  Nenghai Yu,et al.  Trajectory simplification method for location-based social networking services , 2009, LBSN '09.

[13]  Marc van Kreveld,et al.  The definition and computation of trajectory and subtrajectory similarity , 2007, GIS.

[14]  Maarten Löffler,et al.  Segmentation of Trajectories for Non-Monotone Criteria , 2013, SODA.

[15]  Joachim Gudmundsson,et al.  Constrained free space diagrams: a tool for trajectory analysis , 2010, Int. J. Geogr. Inf. Sci..

[16]  Johannes Schamel Ableitung von Präferenzen aus GPS-Trajektorien bei landschaftsbezogenen Erholungsaktivitäten , 2015, AGIT Journal Angew. Geoinformatik.

[17]  David Eppstein,et al.  Finding All Maximal Subsequences with Hereditary Properties , 2015, SoCG.

[18]  Bob McKercher,et al.  Typologies of tourists’ time–space consumption: a new approach using GPS data and GIS tools , 2014 .

[19]  Kevin Buchin,et al.  Exact algorithms for partial curve matching via the Fréchet distance , 2009, SODA.