Non-conforming finite element methods for transmission eigenvalue problem ☆

Abstract The transmission eigenvalue problem is an important and challenging topic arising in the inverse scattering theory. In this paper, for the Helmholtz transmission eigenvalue problem, we give a weak formulation which is a nonselfadjoint linear eigenvalue problem. Based on the weak formulation, we first discuss the non-conforming finite element approximation, and prove the error estimates of the discrete eigenvalues obtained by the Adini element, the Morley–Zienkiewicz element, the modified-Zienkiewicz element et al. And we report some numerical examples to validate the efficiency of our approach for solving transmission eigenvalue problem.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Jiguang Sun Iterative Methods for Transmission Eigenvalues , 2011, SIAM J. Numer. Anal..

[3]  End Semester Me Finite element methods , 2018, Graduate Studies in Mathematics.

[4]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[5]  Jiguang Sun,et al.  Estimation of transmission eigenvalues and the index of refraction from Cauchy data , 2010 .

[6]  P. Lascaux,et al.  Some nonconforming finite elements for the plate bending problem , 1975 .

[7]  Morten Hjorth-Jensen Eigenvalue Problems , 2021, Explorations in Numerical Analysis.

[8]  Xia Ji,et al.  A Multigrid Method for Helmholtz Transmission Eigenvalue Problems , 2014, J. Sci. Comput..

[9]  H. Haddar,et al.  On the existence of transmission eigenvalues in an inhomogeneous medium , 2009 .

[10]  D. Colton,et al.  The computation of lower bounds for the norm of the index of refraction in an anisotropic media from far field data , 2009 .

[11]  Xia Ji,et al.  Algorithm 922: A Mixed Finite Element Method for Helmholtz Transmission Eigenvalues , 2012, TOMS.

[12]  Hai Bi,et al.  Error estimates and a two grid scheme for approximating transmission eigenvalues , 2015, 1506.06486.

[13]  Jie Shen,et al.  A Spectral-Element Method for Transmission Eigenvalue Problems , 2013, J. Sci. Comput..

[14]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[15]  Jiguang Sun,et al.  Finite Element Methods for Maxwell's Transmission Eigenvalues , 2012, SIAM J. Sci. Comput..

[16]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[17]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[18]  Ming Wang,et al.  A new class of Zienkiewicz-type non-conforming element in any dimensions , 2007, Numerische Mathematik.

[19]  Fioralba Cakoni,et al.  Transmission Eigenvalues , 2021, Applied Mathematical Sciences.

[20]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[21]  D. Colton,et al.  Analytical and computational methods for transmission eigenvalues , 2010 .

[22]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[23]  Hai Bi,et al.  A new weak formulation and finite element approximation for transmission eigenvalues , 2015 .

[24]  D. Colton,et al.  Transmission eigenvalues and the nondestructive testing of dielectrics , 2008 .

[25]  Jiguang Sun,et al.  Error Analysis for the Finite Element Approximation of Transmission Eigenvalues , 2014, Comput. Methods Appl. Math..

[26]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[27]  D. Vasilopoulos,et al.  On the determination of higher order terms of singular elastic stress fields near corners , 1988 .

[28]  Liwei Xu,et al.  Computation of Maxwell’s transmission eigenvalues and its applications in inverse medium problems , 2013 .

[29]  W. Gibbs,et al.  Finite element methods , 2017, Graduate Studies in Mathematics.

[30]  Bryan P. Rynne,et al.  The interior transmission problem and inverse scattering from inhomogeneous media , 1991 .

[31]  Yang,et al.  A POSTERIORI ERROR ESTIMATES IN ADINI FINITE ELEMENT FOR EIGENVALUE PROBLEMS , 2000 .