Elastic Fragments for Dense Scene Reconstruction

We present an approach to reconstruction of detailed scene geometry from range video. Range data produced by commodity handheld cameras suffers from high-frequency errors and low-frequency distortion. Our approach deals with both sources of error by reconstructing locally smooth scene fragments and letting these fragments deform in order to align to each other. We develop a volumetric registration formulation that leverages the smoothness of the deformation to make optimization practical for large scenes. Experimental results demonstrate that our approach substantially increases the fidelity of complex scene geometry reconstructed with commodity handheld cameras.

[1]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[2]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[3]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[4]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[5]  Marc Levoy,et al.  Real-time 3D model acquisition , 2002, ACM Trans. Graph..

[6]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[7]  Nikos Paragios,et al.  Non-rigid registration using distance functions , 2003, Comput. Vis. Image Underst..

[8]  Reinhard Koch,et al.  Visual Modeling with a Hand-Held Camera , 2004, International Journal of Computer Vision.

[9]  Richard Szeliski,et al.  A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[10]  Nikos Paragios,et al.  Shape registration in implicit spaces using information theory and free form deformations , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[13]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[14]  Jan-Michael Frahm,et al.  Detailed Real-Time Urban 3D Reconstruction from Video , 2007, International Journal of Computer Vision.

[15]  Benedict J. Brown,et al.  Global non-rigid alignment of 3-D scans , 2007, ACM Trans. Graph..

[16]  M. Pauly,et al.  Embedded deformation for shape manipulation , 2007, SIGGRAPH 2007.

[17]  Anand Rangarajan,et al.  Simultaneous Nonrigid Registration of Multiple Point Sets and Atlas Construction , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Richard Szeliski,et al.  Towards Internet-scale multi-view stereo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Andrew J. Davison,et al.  Live dense reconstruction with a single moving camera , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[22]  Tomás Pajdla,et al.  3D with Kinect , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[23]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[24]  Baba C. Vemuri,et al.  Robust Point Set Registration Using Gaussian Mixture Models , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Dieter Fox,et al.  RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments , 2012, Int. J. Robotics Res..

[26]  Juho Kannala,et al.  Joint Depth and Color Camera Calibration with Distortion Correction , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Marsette Vona,et al.  Moving Volume KinectFusion , 2012, BMVC.

[28]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Sander Oude Elberink,et al.  Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications , 2012, Sensors.

[30]  Shahram Izadi,et al.  Modeling Kinect Sensor Noise for Improved 3D Reconstruction and Tracking , 2012, 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission.

[31]  Wolfram Burgard,et al.  An evaluation of the RGB-D SLAM system , 2012, 2012 IEEE International Conference on Robotics and Automation.

[32]  Sebastian Thrun,et al.  Unsupervised Intrinsic Calibration of Depth Sensors via SLAM , 2013, Robotics: Science and Systems.

[33]  Vladlen Koltun,et al.  Dense scene reconstruction with points of interest , 2013, ACM Trans. Graph..

[34]  John J. Leonard,et al.  Robust real-time visual odometry for dense RGB-D mapping , 2013, 2013 IEEE International Conference on Robotics and Automation.

[35]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.