Reversed-phase chromatography with large pore superficially porous particles for high throughput immunoglobulin G2 disulfide isoform separation.

[1]  Braydon L. Burgess,et al.  Domain-specific free thiol variant characterization of an IgG1 by reversed-phase high-performance liquid chromatography mass spectrometry. , 2017, Analytical biochemistry.

[2]  Bing Zhang,et al.  Development of a rapid RP-UHPLC-MS method for analysis of modifications in therapeutic monoclonal antibodies. , 2016, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[3]  M. Wirth,et al.  Alleviating nonlinear behavior of disulfide isoforms in the reversed-phase liquid chromatography of IgG2. , 2015, Journal of chromatography. A.

[4]  Y. Zhang,et al.  Characterization of free thiol variants of an IgG1 by reversed phase ultra high pressure liquid chromatography coupled with mass spectrometry. , 2015, Journal of pharmaceutical and biomedical analysis.

[5]  P. Bondarenko,et al.  Conformational difference in human IgG2 disulfide isoforms revealed by hydrogen/deuterium exchange mass spectrometry. , 2015, Biochemistry.

[6]  L. Poppe,et al.  Protected hinge in the immunoglobulin G2‐A2 disulfide isoform , 2014, Protein science : a publication of the Protein Society.

[7]  L. Zhang,et al.  1.9 μm superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules. , 2014, Journal of chromatography. A.

[8]  B. Boyes,et al.  Optimized superficially porous particles for protein separations. , 2013, Journal of chromatography. A.

[9]  T. Dillon,et al.  IgG2 disulfide isoform conversion kinetics. , 2013, Molecular immunology.

[10]  B. Boyes,et al.  Fused-core particle technology in high-performance liquid chromatography: An overview , 2013, Journal of pharmaceutical analysis.

[11]  J. Veuthey,et al.  Comparative study of recent wide-pore materials of different stationary phase morphology, applied for the reversed-phase analysis of recombinant monoclonal antibodies , 2013, Analytical and Bioanalytical Chemistry.

[12]  J. Veuthey,et al.  Impact of mobile phase temperature on recovery and stability of monoclonal antibodies using recent reversed-phase stationary phases. , 2012, Journal of separation science.

[13]  Max Tejada,et al.  Identification and characterization of buried unpaired cysteines in a recombinant monoclonal IgG1 antibody. , 2012, Analytical chemistry.

[14]  Xiaoli Wang,et al.  Applications of superficially porous particles: high speed, high efficiency or both? , 2012, Journal of chromatography. A.

[15]  Hongcheng Liu,et al.  Disulfide bond structures of IgG molecules , 2012, mAbs.

[16]  G. Guiochon,et al.  Shell particles, trials, tribulations and triumphs. , 2011, Journal of chromatography. A.

[17]  B. K. Muralidhara,et al.  Rapid and refined separation of human IgG2 disulfide isomers using superficially porous particles. , 2010, Journal of separation science.

[18]  P. Schnier,et al.  Resolving disulfide structural isoforms of IgG2 monoclonal antibodies by ion mobility mass spectrometry. , 2010, Analytical chemistry.

[19]  G. Guiochon,et al.  Performance of columns packed with the new shell particles, Kinetex-C18. , 2010, Journal of chromatography. A.

[20]  Bing Zhang,et al.  Determination of Fab-hinge disulfide connectivity in structural isoforms of a recombinant human immunoglobulin G2 antibody. , 2010, Analytical chemistry.

[21]  Thomas M. Dillon,et al.  Human IgG2 Antibody Disulfide Rearrangement in Vivo* , 2008, Journal of Biological Chemistry.

[22]  Reed J. Harris,et al.  Effect of Copper Sulfate on Performance of a Serum‐Free CHO Cell Culture Process and the Level of Free Thiol in the Recombinant Antibody Expressed , 2008, Biotechnology progress.

[23]  Ming Li,et al.  Human IgG2 Antibodies Display Disulfide-mediated Structural Isoforms* , 2008, Journal of Biological Chemistry.

[24]  Thomas M. Dillon,et al.  Structural and Functional Characterization of Disulfide Isoforms of the Human IgG2 Subclass* , 2008, Journal of Biological Chemistry.

[25]  Randal R Ketchem,et al.  Electrophoretic evidence for the presence of structural isoforms specific for the IgG2 isotype , 2008, Electrophoresis.

[26]  T. D. Maloney,et al.  Fused-core particle technology as an alternative to sub-2-microm particles to achieve high separation efficiency with low backpressure. , 2007, Journal of separation science.

[27]  Gerd R Kleemann,et al.  Optimization of a reversed-phase high-performance liquid chromatography/mass spectrometry method for characterizing recombinant antibody heterogeneity and stability. , 2006, Journal of chromatography. A.

[28]  H. Maeda,et al.  2,4-Dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to Ellman's reagent in thiol-quantification enzyme assays. , 2005, Angewandte Chemie.

[29]  J. Kirkland,et al.  Superficially porous silica microspheres for fast high-performance liquid chromatography of macromolecules. , 2000, Journal of chromatography. A.

[30]  J. Robyt,et al.  Reaction of protein disulfide groups with Ellman's reagent: a case study of the number of sulfhydryl and disulfide groups in Aspergillus oryzae -amylase, papain, and lysozyme. , 1971, Archives of biochemistry and biophysics.

[31]  C. Horváth,et al.  Fast liquid chromatography: an investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers. , 1967, Analytical chemistry.

[32]  Serge Rudaz,et al.  Analytical strategies for the characterization of therapeutic monoclonal antibodies , 2013 .

[33]  A. Habeeb [37] Reaction of protein sulfhydryl groups with Ellman's reagent. , 1972, Methods in enzymology.

[34]  J. J. Kirkland Controlled surface porosity supports for high-speed gas and liquid chromatography , 1969 .