Electrostatics of spherical metallic particles in cylinder electrostatic separators/sizers

This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/sizers (ESSs). A computational algorithm is employed to depict the cylinder-type electrode arrangements applied in some electrostatic processes generating non-uniform electric fields. The ESS consists of a pair of conducting cylinders. The upper cylinder is energized by HVdc, while the lower one is grounded and mounted horizontally on a revolvable axis. The aim of this paper is to present a new electrode configuration and demonstrate the usefulness of numerical techniques for the evaluation of the particle's motion. A computer program was employed for analysing the behavior of spherical particles in a two-dimensional electrode arrangement that models the actual electric field configuration of cylinder-type electrostatic separators/sizers. The analysis is needed for the development of any new application of this cylinder-type electrode arrangement as an electrostatic separation method. The results reveal that the particle's motion depends on its radius and density and amplitude of the applied voltage. The actual granular mixtures with different specific mass and radius could be separated applying this cylinder-type electrostatic separation method; the lift voltage is an important parameter for separation. With a program for two-dimensional analysis of the electric field, the computational procedure presented in this paper could be employed for any particle shapes.