Epitaxial Ferroelectric Hf0.5Zr0.5O2 Thin Films and Their Implementations in Memristors for Brain‐Inspired Computing

Doped‐HfO2 thin films with ferroelectricity have attracted great attention due to their potential application in semiconductor industry as negative capacitance and resistance switching memory. Despite Hf0.5Zr0.5O2 (HZO) thin films having the most robust ferroelectric properties among all doped‐HfO2 thin films, the realization of single orthorhombic phase HZO thin films is not achieved, while the direct evidence between the structural–properties relationship of orthorhombic phase HZO and ferroelectricity is not confirmed. In this work, the growth of single orthorhombic phase HZO thin films with decent ferroelectricity and resistive switching behavior is reported. With the aid of advanced structural characterization techniques, the HZO thin film is confirmed to be in the single orthorhombic phase. Next, using scanning probe microscopy techniques and macroscopic ferroelectric measurements, the single phase HZO thin films exhibit ferroelectric properties with a remanent polarization of about 20 µC cm−2. Interestingly, the HZO thin film shows ferroelectric resistive switching with an ROFF/RON ratio of about 16 100% with excellent device performance. Furthermore, brain‐like learning behavior is also observed in the HZO thin film. These results may serve to stimulate the study of ferroelectric properties of HZO thin films and their application in the electronic industry.

[1]  Lin‐gun Liu New high pressure phases of ZrO2 and HfO2 , 1980 .

[2]  R. J. Hill,et al.  Crystal Structure of Orthorhombic Zirconia in Partially Stabilized Zirconia , 1989 .

[3]  John Wang,et al.  Hafnia and hafnia-toughened ceramics , 1992, Journal of Materials Science.

[4]  Pereira,et al.  Pressure-induced phase transitions and volume changes in HfO2 up to 50 GPa. , 1993, Physical review. B, Condensed matter.

[5]  M. Bear,et al.  Synaptic plasticity: LTP and LTD , 1994, Current Opinion in Neurobiology.

[6]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[7]  J. Kim,et al.  Current transport in metal/hafnium oxide/silicon structure , 2002, IEEE Electron Device Letters.

[8]  Brian M. Tissue,et al.  Energy Crossovers in Nanocrystalline Zirconia , 2004 .

[9]  S. Ogale Thin films and heterostructures for oxide electronics , 2005 .

[10]  P. McIntyre,et al.  Size-dependent polymorphism in HfO2 nanotubes and nanoscale thin films , 2009 .

[11]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[12]  Ho Won Jang,et al.  Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. , 2009, Nano letters.

[13]  Gayle M. Wittenberg,et al.  Spike Timing Dependent Plasticity: A Consequence of More Fundamental Learning Rules , 2010, Front. Comput. Neurosci..

[14]  Electroresistance effects in ferroelectric tunnel barriers , 2010, 1006.1716.

[15]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[16]  M. Alexe,et al.  Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr 0.2 Ti 0.8)O3 films. , 2011, ACS nano.

[17]  Thomas Mikolajick,et al.  Phase transitions in ferroelectric silicon doped hafnium oxide , 2011 .

[18]  Dmitri B. Strukov,et al.  Nanotechnology: Smart connections , 2011, Nature.

[19]  Lothar Frey,et al.  Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications , 2011 .

[20]  Shimeng Yu,et al.  Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model , 2011 .

[21]  A. Gruverman,et al.  Supplementary Materials for Mechanical Writing of Ferroelectric Polarization , 2012 .

[22]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[23]  Lothar Frey,et al.  Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.

[24]  Christoph Adelmann,et al.  Ferroelectricity in Gd-Doped HfO2 Thin Films , 2012 .

[25]  E. Tsymbal,et al.  Ferroelectric tunnel memristor. , 2012, Nano letters.

[26]  Y. Nishitani,et al.  Dynamic Observation of Brain-Like Learning in a Ferroelectric Synapse Device , 2013 .

[27]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[28]  C. Hwang,et al.  Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes , 2013 .

[29]  C. Hwang,et al.  Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature , 2013 .

[30]  C. Hwang,et al.  Ferroelectric properties and switching endurance of Hf0.5Zr0.5O2 films on TiN bottom and TiN or RuO2 top electrodes , 2014 .

[31]  Jacob L. Jones,et al.  Ferroelectric phenomena in Si-doped HfO2 thin films with TiN and Ir electrodes , 2014 .

[32]  C. Hwang,et al.  The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity , 2014 .

[33]  D. Gilmer,et al.  Conductive filament structure in HfO2 resistive switching memory devices , 2015 .

[34]  Alfred Kersch,et al.  The Origin of Ferroelectricity in Hf$_{x}$ Zr$_{1-x}$ O$_2$: A Computational Investigation and a Surface Energy Model , 2015 .

[35]  Hyung‐Ho Park,et al.  Band Structure Analysis of La0.7Sr0.3MnO3 Perovskite Manganite Using a Synchrotron , 2015 .

[36]  Uwe Schroeder,et al.  On the structural origins of ferroelectricity in HfO2 thin films , 2015 .

[37]  A. Zenkevich,et al.  Resistive switching and synaptic properties of fully atomic layer deposition grown TiN/HfO2/TiN devices , 2015 .

[38]  V. Gritsenko,et al.  Charge transport in amorphous Hf0.5Zr0.5O2 , 2015, 1501.02370.

[39]  Christoph Adelmann,et al.  Stabilizing the ferroelectric phase in doped hafnium oxide , 2015 .

[40]  Stefano Brivio,et al.  Synaptic potentiation and depression in Al , 2015 .

[41]  Jacopo Frascaroli,et al.  Role of metal-oxide interfaces in the multiple resistance switching regimes of Pt/HfO2/TiN devices , 2015 .

[42]  C. Hwang,et al.  A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. , 2016, Nanoscale.

[43]  A. Zenkevich,et al.  Fully ALD-grown TiN/Hf0.5Zr0.5O2/TiN stacks: Ferroelectric and structural properties , 2016 .

[44]  Juanxiu Xiao,et al.  Ferroelectricity and ferroelectric resistive switching in sputtered Hf0.5Zr0.5O2 thin films , 2016 .

[45]  Stephan Menzel,et al.  Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide , 2016 .

[46]  M. K. Hota,et al.  Multistate Resistive Switching Memory for Synaptic Memory Applications , 2016 .

[47]  John Wang,et al.  Ferroelectric HfO2-based materials for next-generation ferroelectric memories , 2016 .

[48]  Thin Films And Heterostructures For Oxide Electronics , 2016 .

[49]  Dmitrii Negrov,et al.  Ultrathin Hf0.5Zr0.5O2 Ferroelectric Films on Si. , 2016, ACS applied materials & interfaces.

[50]  Osami Sakata,et al.  The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film , 2016, Scientific Reports.

[51]  Andreas Ruediger,et al.  A Complementary Metal Oxide Semiconductor Process-Compatible Ferroelectric Tunnel Junction. , 2017, ACS applied materials & interfaces.

[52]  Dong-Wook Lee,et al.  Dual functionality of threshold and multilevel resistive switching characteristics in nanoscale HfO2-based RRAM devices for artificial neuron and synapse elements , 2017 .

[53]  Ferroelectric or non-ferroelectric: Why so many materials exhibit "ferroelectricity" on the nanoscale , 2017, 1701.01128.

[54]  H. Hwang,et al.  HfZrOx-Based Ferroelectric Synapse Device With 32 Levels of Conductance States for Neuromorphic Applications , 2017, IEEE Electron Device Letters.

[55]  Andreas Ruediger,et al.  Tunneling electroresistance effect in a Pt/Hf0.5Zr0.5O2/Pt structure , 2017 .

[56]  P. Bousoulas,et al.  Low-Power Forming Free TiO2–x/HfO2–y/TiO2–x-Trilayer RRAM Devices Exhibiting Synaptic Property Characteristics , 2017, IEEE Transactions on Electron Devices.

[57]  John Wang,et al.  Control of Synaptic Plasticity Learning of Ferroelectric Tunnel Memristor by Nanoscale Interface Engineering. , 2018, ACS applied materials & interfaces.

[58]  C. Hwang,et al.  Improved Ferroelectric Switching Endurance of La-Doped Hf0.5Zr0.5O2 Thin Films. , 2018, ACS applied materials & interfaces.

[59]  Sang Mo Yang,et al.  Ferroelectricity in epitaxial Y-doped HfO2 thin film integrated on Si substrate , 2018 .

[60]  I. Fina,et al.  Robust ferroelectricity in epitaxial Hf1/2Zr1/2O2 thin films , 2018, Applied Physics Letters.

[61]  C. Hwang,et al.  Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films. , 2018, Nanoscale.

[62]  D. Muller,et al.  Growth of LaAlO3 on silicon via an ultrathin SrTiO3 buffer layer by molecular-beam epitaxy , 2018 .