Advances in Industrial Biotechnology Using CRISPR-Cas Systems.

[1]  D van Soolingen,et al.  Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology , 1997, Journal of clinical microbiology.

[2]  James A. Thomson,et al.  Homologous recombination in human embryonic stem cells , 2003, Nature Biotechnology.

[3]  Li-Duan Tsai,et al.  An Isolated Candida albicans TL3 Capable of Degrading Phenol at Large Concentration , 2005, Bioscience, biotechnology, and biochemistry.

[4]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[5]  Philippe Horvath,et al.  Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus , 2007, Journal of bacteriology.

[6]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[7]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[8]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[9]  Philippe Horvath,et al.  The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli , 2011, Nucleic acids research.

[10]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[11]  Daniel Mucida,et al.  CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. , 2012, Cell host & microbe.

[12]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[13]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[14]  George M. Church,et al.  Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems , 2013, Nucleic acids research.

[15]  L. Marraffini,et al.  Control of gene expression by CRISPR-Cas systems , 2013, F1000prime reports.

[16]  George M. Church,et al.  Heritable genome editing in C. elegans via a CRISPR-Cas9 system , 2013, Nature Methods.

[17]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[18]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[19]  W. Chung,et al.  Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk , 2013, PLoS genetics.

[20]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[21]  R. Barrangou,et al.  Genomic impact of CRISPR immunization against bacteriophages. , 2013, Biochemical Society transactions.

[22]  R. Barrangou,et al.  Phylogenetic Diversity of the Enteric Pathogen Salmonella enterica subsp. enterica Inferred from Genome-Wide Reference-Free SNP Characters , 2013, Genome biology and evolution.

[23]  R. Barrangou,et al.  Lactobacillus buchneri Genotyping on the Basis of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Locus Diversity , 2013, Applied and Environmental Microbiology.

[24]  R. Barrangou,et al.  In vitro reconstitution of Cascade‐mediated CRISPR immunity in Streptococcus thermophilus , 2013, The EMBO journal.

[25]  Peter C. Fineran,et al.  Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands , 2013, PLoS genetics.

[26]  D. Castle Cannabis and psychosis: what causes what? , 2013, F1000 medicine reports.

[27]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[28]  George M. Church,et al.  Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 , 2013, Nature Biotechnology.

[29]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[30]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[31]  Harris H. Wang,et al.  Genome-scale engineering for systems and synthetic biology , 2013, Molecular systems biology.

[32]  N. Shariat,et al.  CRISPRs: Molecular Signatures Used for Pathogen Subtyping , 2013, Applied and Environmental Microbiology.

[33]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[34]  Feng Zhang,et al.  Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system , 2013, Nucleic acids research.

[35]  Jennifer A. Doudna,et al.  Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity , 2014, Nature Structural &Molecular Biology.

[36]  Mark J. Pallen,et al.  Recovery of a Medieval Brucella melitensis Genome Using Shotgun Metagenomics , 2014, mBio.

[37]  Albert J R Heck,et al.  RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. , 2014, Molecular cell.

[38]  Peter C. Fineran,et al.  CRISPR–Cas systems: beyond adaptive immunity , 2014, Nature Reviews Microbiology.

[39]  J. Oost,et al.  Unravelling the structural and mechanistic basis of CRISPR–Cas systems , 2014, Nature Reviews Microbiology.

[40]  M. Zaratiegui,et al.  Implementation of the CRISPR-Cas9 system in fission yeast , 2014, Nature Communications.

[41]  Chase L. Beisel,et al.  Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems , 2014, mBio.

[42]  Christopher A. Voigt,et al.  Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks , 2014, Molecular systems biology.

[43]  Jamie H. D. Cate,et al.  Selection of chromosomal DNA libraries using a multiplex CRISPR system , 2014, eLife.

[44]  N. Wierckx,et al.  Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals , 2014, Fungal Biology and Biotechnology.

[45]  Chris P Ponting,et al.  Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System , 2014, Cell reports.

[46]  Jan-Peter van Pijkeren,et al.  CRISPR–Cas9-assisted recombineering in Lactobacillus reuteri , 2014, Nucleic acids research.

[47]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[48]  B. Stoddard,et al.  Editorial: NAR Surveys the Past, Present and Future of Restriction Endonucleases , 2013, Nucleic acids research.

[49]  Timothy K Lu,et al.  Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases , 2014, Nature Biotechnology.

[50]  Chad W. Euler,et al.  Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials , 2014, Nature Biotechnology.

[51]  T. Arie,et al.  Tailor‐made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus , 2015, Biotechnology and bioengineering.

[52]  Sheng Yang,et al.  Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9 System , 2015, Applied and Environmental Microbiology.

[53]  Luke A. Gilbert,et al.  Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds , 2015, Cell.

[54]  Eugene V Koonin,et al.  Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. , 2015, Molecular cell.

[55]  D. Nimmo,et al.  Interspecific and Geographic Variation in the Diets of Sympatric Carnivores: Dingoes/Wild Dogs and Red Foxes in South-Eastern Australia , 2015, PloS one.

[56]  K. Kitamoto,et al.  Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae , 2016, Biotechnology Letters.

[57]  Yi Wang,et al.  Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. , 2015, Journal of biotechnology.

[58]  U. Mortensen,et al.  A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi , 2015, PloS one.

[59]  Jay D Keasling,et al.  CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae , 2015, Microbial Cell Factories.

[60]  V. Siewers,et al.  Advances in yeast genome engineering. , 2014, FEMS yeast research.

[61]  C. Hong,et al.  Efficient gene editing in Neurospora crassa with CRISPR technology , 2015, Fungal Biology and Biotechnology.

[62]  R. Linhardt,et al.  Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways. , 2015, Current opinion in biotechnology.

[63]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[64]  Rodolphe Barrangou,et al.  Harnessing CRISPR-Cas systems for bacterial genome editing. , 2015, Trends in microbiology.

[65]  Max G Schubert,et al.  Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas. , 2015, Cell systems.

[66]  H. Stratton,et al.  CRISPR Diversity in E. coli Isolates from Australian Animals, Humans and Environmental Waters , 2015, PloS one.

[67]  Christopher L. Hemme,et al.  Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase , 2015, Applied and Environmental Microbiology.

[68]  Kylie Standage-Beier,et al.  Targeted Large-Scale Deletion of Bacterial Genomes Using CRISPR-Nickases , 2015, ACS synthetic biology.

[69]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[70]  Magnus Lundgren,et al.  Efficient programmable gene silencing by Cascade , 2014, Nucleic acids research.

[71]  D. Maresch,et al.  Development of a fed-batch process for a recombinant Pichia pastoris Δoch1 strain expressing a plant peroxidase , 2015, Microbial Cell Factories.

[72]  U. Qimron,et al.  Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria , 2015, Proceedings of the National Academy of Sciences.

[73]  Murray Moo-Young,et al.  Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli , 2015, Applied and Environmental Microbiology.

[74]  G. Zou,et al.  Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system , 2015, Cell Discovery.

[75]  C. Tyler-Smith,et al.  Ancient DNA and the rewriting of human history: be sparing with Occam’s razor , 2016, Genome Biology.

[76]  Christopher A. Voigt,et al.  Targeted DNA degradation using a CRISPR device stably carried in the host genome , 2015, Nature Communications.

[77]  Jay D Keasling,et al.  Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. , 2015, Metabolic engineering.

[78]  Huimin Zhao,et al.  High-Efficiency Multiplex Genome Editing of Streptomyces Species Using an Engineered CRISPR/Cas System , 2014, ACS synthetic biology.

[79]  Gerald R. Fink,et al.  A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families , 2015, Science Advances.

[80]  Huimin Zhao,et al.  Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. , 2015, ACS synthetic biology.

[81]  Jack T. Pronk,et al.  CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae , 2015, FEMS yeast research.

[82]  A. Driessen,et al.  CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum. , 2016, ACS synthetic biology.

[83]  M. Jinek,et al.  Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9. , 2016, Molecular cell.

[84]  Derek E. Wildman,et al.  Corrigendum: DICER1 and microRNA regulation in post-traumatic stress disorder with comorbid depression , 2016, Nature Communications.

[85]  Christine L. Sun,et al.  Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems , 2016, Nature Communications.

[86]  A. Mitchell,et al.  Candida albicans Gene Deletion with a Transient CRISPR-Cas9 System , 2016, mSphere.

[87]  K. Zargar,et al.  In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community , 2016, Scientific reports.

[88]  A. Singh,et al.  Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system , 2016, Nucleic acids research.

[89]  James M. Carothers,et al.  Robust digital logic circuits in eukaryotic cells with CRISPR/dCas9 NOR gates , 2016, bioRxiv.

[90]  H. Blaschek,et al.  Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean" Mutant Selection in Clostridium beijerinckii as an Example. , 2016, ACS synthetic biology.

[91]  S. Reissmann,et al.  Genome editing in Ustilago maydis using the CRISPR-Cas system. , 2016, Fungal genetics and biology : FG & B.

[92]  V. Martin,et al.  Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9 , 2016, Journal of Biological Engineering.

[93]  R. Linhardt,et al.  Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli , 2016, Nucleic acids research.

[94]  Eric S. Lander,et al.  C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector , 2016, Science.

[95]  Steven J. M. Jones,et al.  Large-scale profiling of microRNAs for The Cancer Genome Atlas , 2015, Nucleic acids research.

[96]  Takanori Nakane,et al.  Structure and Engineering of Francisella novicida Cas9 , 2016, Cell.

[97]  Alex Toftgaard Nielsen,et al.  CRMAGE: CRISPR Optimized MAGE Recombineering , 2016, Scientific Reports.

[98]  J. Altenbuchner Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System , 2016, Applied and Environmental Microbiology.

[99]  Zhiqiang Wen,et al.  Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system , 2016, Journal of Industrial Microbiology & Biotechnology.

[100]  L. Tsimring,et al.  Orthogonal Modular Gene Repression in Escherichia coli Using Engineered CRISPR/Cas9. , 2016, ACS synthetic biology.

[101]  Timothy K Lu,et al.  Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi) , 2016, ACS synthetic biology.

[102]  Gang Su,et al.  Corrigendum: Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance , 2016, Scientific Reports.

[103]  Yang Gu,et al.  CRISPR/Cas9-Based Efficient Genome Editing in Clostridium ljungdahlii, an Autotrophic Gas-Fermenting Bacterium. , 2016, ACS synthetic biology.

[104]  Sundari Suresh,et al.  Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design , 2016, Genome Biology.

[105]  C. Jessica E. Metcalf,et al.  Assessing the global threat from Zika virus , 2016, Science.

[106]  T. Vogl,et al.  Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. , 2016, Journal of biotechnology.

[107]  Sergey A. Shmakov,et al.  CRISPR EVOLUTION C 2 c 2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector , 2016 .

[108]  Michael Köpke,et al.  Genome editing of Clostridium autoethanogenum using CRISPR/Cas9 , 2016, Biotechnology for Biofuels.

[109]  Murray Moo-Young,et al.  Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium , 2016, Scientific Reports.

[110]  Chi Zhang,et al.  Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. , 2016, Fungal genetics and biology : FG & B.

[111]  A thermostable Cas9 with increased lifetime in human plasma , 2017 .

[112]  Sergey A. Shmakov,et al.  Cas13b is a Type VI-B CRISPR-associated RNA-Guided RNase differentially regulated by accessory proteins Csx27 and Csx28 , 2016, bioRxiv.

[113]  Jennifer A. Doudna,et al.  New CRISPR-Cas systems from uncultivated microbes , 2016, Nature.

[114]  Chaoguang Tian,et al.  Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering , 2017, Biotechnology for Biofuels.

[115]  J. van der Oost,et al.  Efficient Genome Editing of a Facultative Thermophile Using Mesophilic spCas9 , 2017, ACS synthetic biology.

[116]  Kira S. Makarova,et al.  Diversity and evolution of class 2 CRISPR–Cas systems , 2017, Nature Reviews Microbiology.

[117]  I. Wheeldon,et al.  Standardized Markerless Gene Integration for Pathway Engineering in Yarrowia lipolytica. , 2017, ACS synthetic biology.

[118]  Sergey A. Shmakov,et al.  Cas 13 b Is a Type VIB CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx 27 and Csx 28 , 2017 .